Subject Areas : Journal of Optoelectronical Nanostructures
Ali Moftakharzadeh 1 , Behnaz Afkhami Aghda 2 , Mehdi Hosseini 3
1 - Department of Electrical Engineering, Yazd University, Yazd, Iran, Postal
Code 89195-741.
2 - Pishgaman Asr Ertebatat Company, Yazd, Iran.
3 - Department of physics, Shiraz University of Technology, Shiraz, Iran,
Postal Code 313-71555.
Keywords:
Abstract :
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science. [Online]. 306(5696) (2004, Oct.) 666-669.
Available: http://science.sciencemag.org/content/306/5696/666
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature. [Online]. 438 (2005, Nov.) 197-200. Available: https://www.nature.com/articles/nature04233
[3] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the quantum Hall Effect and Berry's phase in graphene. Nature. [Online]. 438 (2005, Nov.) 201-204. Available: https://www.nature.com/articles/nature04235
[4] P. R. Wallace. The band theory of graphite. Phys. Rev. 71(9) (1947, May.) 622-634.
[5] J. C. Slonczewski, and P. R. Weiss. Band structure of graphite. Phys. Rev. 109(2) (1958, Jan.) 272-279.
[6] G. W. Semenoff. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. [Online]. 53(26) (1984, Dec.) 2449-2452.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.53.2449
[7] V. P. Gusynin, and S. G. Sharapov. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. [Online]. 95(14) (2005, Sep.) 146801.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.146801
[8] N. M. R. Peres, A. H. Castro Neto, and F. Guinea. Conductance quantization in mesoscopic graphene. Phys. Rev. B. [Online]. 73(19) (2006, May.) 195411. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.73.195411
[9] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. Beenakker. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. [Online]. 96(24) (2006, Jun.) 246802.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.246802
[10] Y. Zhang, J. P. Small, M. E. Amori, and P. Kim. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. [Online]. 94(17) (2005, May.) 176803.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.176803
[11] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. Chiral tunneling and the Klein paradox in graphene. Nature physics. [Online]. 2(9) (2006, Aug.) 620-625. Available: https://www.nature.com/articles/nphys384
[12] C. W. J. Beenaker. Specular Andreev Reflection in Graphene. Phys. Rev. Lett. [Online]. 97 (2006, Aug.) 067007.
Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.067007
[13] A. F. Volkov, P. H. C. Magnée, B. J. Van Wees, and T. M. Klapwijk. Proximity and Josephson effects in superconductor-two-dimensional electron gas planar junctions. Physica C: Superconductivity. [Online]. 242(3) (1995, Feb.) 261-266. Available:https://www.sciencedirect.com/science/article/abs/pii/0921453494024294
[14] M. Titov, and C. W. Beenakker. Josephson effect in ballistic graphene. Phys. Rev. B. [Online]. 74(4) (2006, Jul.) 041401.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.74.041401
[15] P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials. [Online]. 4 (2005, Dec.) 86-92. Available: https://www.nature.com/articles/nmat1276
[16] J. Lou, Y. Wang, and L. Tong. Microfiber optical sensors: A review. Sensors. [Online]. 14(4) (2014, Mar.) 5823-5844.
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029688/
[17] A., Dinoi, A. Donateo, F. Belosi, M. Conte, and D. Contini. "Comparison of atmospheric particle concentration measurements using different optical detectors: Potentiality and limits for air quality applications." Measurement 106 (2017): 274-282.
[18] R. J. Keyes. Optical and infrared detector. 2nd ed. Springer Science & Business Media (2013), 101-147.
[19] F. Alves, D. Grbovic, and G. Karunasiri, February. MEMS THz sensors using metasurface structures. “In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI.” International Society for Optics and Photonics. 10531 (2018) 1053111.
Available: http://iopscience.iop.org/article/10.1088/0953-2048/9/10/001
[20] Z. Chen, G., Hefferman, and T. Wei,. “A low bandwidth DFB laser-based interrogator for terahertz-range fiber Bragg grating sensors.” IEEE Photonics Technology Letters, (2017), 29(4), pp.365-368.
[21] M. Hosseini, A. Moftakharzadeh, A. Kokabi, M. A. Vesaghi, H. Kinder, and M. Fardmanesh. Characterization of a transition-edge bolometer made of YBCO thin films prepared by nonfluorine metal–organic deposition. IEEE Trans. on Appl. Supercond. [Online]. 21(6) (2011, Dec.) 3587-3591.
Available: https://ieeexplore.ieee.org/document/6029287/
[22] M. Hosseini, A. Kokabi, A. Moftakharzadeh, M. A. Vesaghi, and M. Fardmanesh. Effect of substrate thickness on responsivity of free-membrane bolometric detectors. IEEE Sensors Journal. [Online]. 11(12) (2011, May.) 3283-3287.
Available: https://ieeexplore.ieee.org/abstract/document/5772900/
[23] M. Hosseini. Tailoring the terahertz absorption in the quantum wells. Optik-International Journal for Light and Electron Optics. [Online]. 127(10) (2016, May.) 4554-4558.
Available: https://www.sciencedirect.com/science/article/pii/S0030402616002072
[24] J. Fernández-Rossier, J. J. Palacios, and L. Brey. Electronic structure of gated graphene and graphene ribbons. Phys. Rev. B. [Online]. 75 (2007, May.) 205441. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.205441
[25] M. S. Azadeh, A. Kokabi, M. Hosseini, and M. Fardmanesh. Tunable bandgap opening in the proposed structure of silicon-doped graphene. Micro & Nano Lett. [Online]. 6(8) (2011, Aug.) 582-585.
Available: https://ieeexplore.ieee.org/document/6012991/
[26] M. B. Shalom, M. J. Zhu, V. I. Fal’ko, A. Mishchenko, A. V. Kretinin, K. S. Novoselov, C. R. Woods K. Watanabe, T. Taniguchi, A. K. Geim, and J. R. Prance. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nature Physics. [Online]. 12(4) (2016, Dec.) 318-322. Available: https://www.nature.com/articles/nphys3592
[27] D. Golubev and L. Kuzmin. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulatorsuperconductor tunnel junction. Journal of Applied Physics. [Online]. 89(11) (2001, Jun.) 6464-6472.
Available: https://aip.scitation.org/doi/abs/10.1063/1.1351002
[28] B. A. Aghda, A. Moftakharzadeh, and M. Hosseini. Noise Equivalent Power of Graphene–Superconductor-Based Optical Sensor. Fluctuation and Noise Letters. [Online]. 16(01) (2017, Mar.) 1750006.
Available: https://www.worldscientific.com/doi/abs/10.1142/S0219477517500067
[29] B. V. Duppen and F. M. Peeters. Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field. Phys. Rev. B. [Online]. 88(24) (2013, Dec.) 245429.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.245429