Subject Areas : Journal of Optoelectronical Nanostructures
Hamed Azimi 1 , Seyyed Hamid Ahmadi 2 , Mohammad Reza Manafi 3 , Syed Hossein Hashemi Moosavi 4 , Mostafa Najafi 5
1 - Islamic Azad university, South Tehran Branch
2 - Chemistry & Chemical Engineering Research Center of Iran
3 - Islamic Azad university, South Tehran Branch
4 - Islamic Azad university, South Tehran Branch
5 - Imam Hosein University
Keywords:
Abstract :
[1] X. Wu, S. J. Cobbina, G. Mao, H. Xu, Z, Zhang, L. Yang, A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment, Environ. Sci. Pollut. Res., 23(9) (2016) 8244–8259.
[2] G. Ramezani,1, B. Honarvar, M. Emadi, Thermodynamic study of (pb2+) removal by adsorption onto modified magnetic graphene oxide with chitosan and cysteine, J. Optoelectron. Nanostruc., 4(3) (2019) 73-94.
[3] Ç. Büyükpınar, E. Maltepe, D. S. Chormey, N. San, S. Bakırdere, Determination of nickel in water and soil samples at trace levels using photochemical vapor generation-batch type ultrasonication assisted gas liquid separator-atomic absorption spectrometry, Microchem. J., 132 (2017) 167–171.
[4] F. R. Adolfo, P. C. Nascimento, D. Bohrer, L. M. de Carvahlo, Carine Viana, A. Guarda, A. N. Colim, P. mattiazzi, Simultaneous determination of cobalt and nickel in vitamin B12 samples using high-resolution continuum source atomic absorption spectrometry, Talanta, 147 (2016) 241–245.
[5] E. Punrat, P. Tutiyasarn, S. Chuanuwatanakul, O. Chailapakul, Determination of nickel(II) by ion-transfer to hydroxide medium using sequential injection-electrochemical analysis (SIECA). Talanta, 168(2017) 286–290.
[6] S. L. Dos Anjos, J. C. Alves, S. A. R. Soares, R. G. O. Araujo, O. M. C. de Oliviera, A. F. S. Queiroz, S. L. C. Ferreira, Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP-OES, Talanta. 178 (2018) 842-846.
[7] K. M. Mayer, J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chem. Rev., 111 (2011) 3828-3857.
[8] M. Rezvani, M. Fathi Sepahvand, Simulation of surface plasmon excitation in a plasmonic nano-wire using surface integral equations, J. Optoelectron. Nanostruc.,1(1) (2016) 51-64.
[9] Z. R. Goddard, M. J. Marin, D. A. Russel, M. Searcey, Active targeting of gold nanoparticles as cancer therapeutics, Chem. Soc. Rev., 49 (2020) 8774-8789
[10] S. Z. Hosseini Minabi, A. Keshavarz, A. Gharaati, The effect of temperature on optical absorption cross section of bimetallic core-shell nano particle, J. Optoelectron. Nanostruc., 1(3) (2016) 67-76.
[11] J. H. Choi, J. H. Lee, J. Son, J. W. Choi, Noble metal-assisted surface plasmon resonance immunosensors, Sensors, vol 20, 1003, 2020.
[12] M. Zoghi, Reflection Shifts in Gold Nanoparticles, J. Optoelectron. Nanostruc., 3(1) (2019) 73-94.
[13] X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, Y. Xia, Chemical Synthesis of Novel Plasmonic Nanoparticles, Annu. Rev. Phys. Chem., 60 (2009) 167–92.
[14] K. A.Willets, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 58 (2007) 267–297.
[15] S. Royanian, A. Abdolahzadeh Ziabari, Performance improvement of ultrathin CIGS solar cells using Al plasmonic nanoparticles: The effect of the position of nanoparticles, J. Optoelectron. Nanostruc., 5(4) (2020) 17-32.
[16] A. Pandya, P. G. Sutariya, A. Lodha, S. K. Menon, A novel calix[4]arene thiolfunctionalized silver nanoprobe for selective recognition of ferric ion with nanomolar sensitivity via DLS selectivity in human biological fluid. Nanoscale., 5(6) (2013) 2364–2371.
[17] H. K. Sung, S. Y. Oh, C. H. Park, Y. Kim, Colorimetric detection of Co2+ ion using silver nanoparticles with spherical, plate, and rod shapes, Langmuir., 29(28) (2013) 8978–8982.
[18] Y. R. Ma, H. Y. Niu, X. L. Zhang, Y. Q. Cai, Colorimetric detection of copper ions in tape water during the synthesis of silver/dopamine nanoparticles, Chem. Commun. vol. 47 (2011) 12643–12645.
[19] H. Azimi, S. H. Ahmadi, M.R. Manafi, S, H. H. Mousavi, M. Najafi, Development of an analytical method for the determination of lead based on local surface plasmon resonance of silver nanoparticles, Quím. Nova, 43(6) (2020). 760-764.
[20] H. Li, L. Zhang, Y. Yao, C. Han, S. Jin, Synthesis of aza-crown ether-modified silver nanoparticles as colorimetric sensors for Ba2+, Supramol. Chem., 22(9) (2010) 544–547.
[21] R. K. Bera, A. K. Das, C. R. Raj, Enzyme-cofactor-assisted photochemical synthesis of Ag nanostructures and shape-dependent optical sensing of Hg (II) ions, Chem. Mater., vol. 22(15) (2010) 4505–4511.
[22] M. Zhang, Yu. Q. Liu, B. C. Ye, Mononucleotide-modified metal nanoparticles: an efficient colorimetric probe for selective and sensitive detection of aluminum (III) on living cellular surfaces, Chem. Euro. J., 18(9) (2012) 2507–2513.
[23] E. Alzahrani, Colorimetric detection based on localized surface plasmon resonance optical characteristics for sensing of mercury using green synthesized silver nanoparticle, J. Anal. Method. Chem, 4 (2020) 6026312.
[24] X. Wu, Y. Xu, Y. Dong, X. Jiang, N. Zhu, Colorimetric determination of hexavalent chromium with ascorbic acid capped silver nanoparticles, Anal. Method., 5(2) (2013) 560-565.
[25] M. Elbarghouti, A. Akjouj, A. Mir, Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications, Vacuum, 180 (2020), 109497.
[26] A. Loiseau, L. Zhang, D. Hu, M. Salmain, Y. Mazouzi, R. Flack, B. Liedberg, S. Boujday, Core-shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensors, ACS Appl. Mater. Interfaces, 50 (2019) 46462-46471.
[27] E. Mauriz, Recent progress in plasmonic biosensing schemes for virus detections, Sensors, 20 (2020) 4745.
[28] F. Yaghubi, M. Zeinoddini, A. R. Saeednia, Design of localized surface plasmone resonance biosensor for immunodiagnostic of E. coli, Plasmonics, vol: 15 (2020) 1481-1487.
[29] P. Q. T. Do, V. T. Huong, N. T. T. Phuong, t. H. Nguyen, H. K. T. Ta, H. Ju, T. B. Phan, V. D. Phung, K. t. L. Thrinh, N. H. T. Tran, The highly sensitive determination of serotonin by using gold nanoparticles with a LSPR absorption wavelengths in the visible region, RSC Adv., 10 (2020) 30858-30869.
[30] J. Aguado, J. M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica, J. Hazard. Mater., 163 (2009) 213-221.
[31] K. K. Wong, C. K. Lee, K. S. Low, M. J. Haron, Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions, Chemosphere, 50,(2003) 23-28.
[32] S. K. Vaishnav, K. Patel, K. Chandekar, J. Korram, R. Nagwanshi, K. K. Ghosh, M. L. Satnami, Surface plasmon resonance based spectrophotometric determination of medicinally important thiol compounds using unmodified silver nanoparticles, Spectrochim. Acta A., 179 (2017) 155–162.
[33] A. M. E. Badawy, T. P. Luxton , R.G. Silva., K. G. Scheckel, M. T. Suidan, T. M. Tolaymat., Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions, Environ. Sci. Technol., 44(4) (2010)1260-1266.
[34] J. D. Ingles, S.R. Crough, Spectrochemical Analysis, Prentice Hall, (1988)
[35] M. Zhang, Y.Q. Liu, B. C. Ye, Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. Analyst, 137(3) (2012) 601-607.
[36] L. Feng, Y. Zhang, L. Wen, L. Chen, Z. Shen, Y. Guan, Colorimetric filtrations of metal chelate precipitations for the quantitative determination of nickel(II) and lead(II), Analyst., 136(20) (2011) 4197-4203.
[37] N. Chen, Y. Zhang, H. Liu, H. Ruan, C. Dong, Z. Shen, A. Wu, A supersensitive probe for rapid colorimetric detection of nickel ion based on a sensing mechanism of anti-etching, ACS Sustain. Chem. Eng., 4 (12) (2016) 6509-6516.
[38] X. Liu, Q. Lin, T.B. Wei, Y.M. Zhang, A highly selective colorimetric chemosensor for detection of nickel ions in aqueous solution, New J. Chem., 38(4) (2014) 1418-1423.
[39] J. Feng, W. Jin, P. Huang, F. Wu, Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate, J Nanopart Res., vol. 19 (2017), 306.
[40] S. Goswami, S. Chakraborty, A.K. Das, A. Manna, A. Bhattacharyya, C.K. Quah, H. K. Fun, Selective colorimetric and ratiometric probe for Ni(II) in quinoxaline matrix with the single crystal X-ray structure, RSC Adv., 4(40) (2014) 20922-20926.