Subject Areas : Journal of Optoelectronical Nanostructures
somaye jalaei 1 , javad karamdel 2 , Hassan Ghalami Bavil Olyaee 3
1 - Department of Electrical Engineering, South Tehran Branch, Islamic Azad University,
Tehran, Iran
2 - Department of Electrical Engineering, South Tehran Branch, Islamic Azad University,
Tehran, Iran
3 - Department of Physics, South Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] S. Jeon, et al., Black phosphorus photodetector integrated with Au
nanoparticles. Appl. Phys. Lett. [Online]. 115(18) (2019, Oct) 183102.
Available: https://doi.org/10.1063/1.5119833
[2] B. Deng, et al., Progress on black phosphorus photonics. Adv. Opt. Mater.
[Online] 6(19) (2018, Oct) 1800365. Available:
https://doi.org/10.1002/adom.201800365
[3] R. Irshad, et al., A revival of 2D materials, phosphorene: Its application as
sensors. Ind Eng Chem. [Online] 64 (2018, Aug) 60-9. Available:
https://doi.org/10.1016/j.jiec.2018.03.010
[4] PC. Debnath, K. Park, YW. Song. Recent Advances in
Black‐ Phosphorus‐ Based Photonics and Optoelectronics Devices. Small
Methods. [Online] 2(4) (2018, Apr) 1700315. Available:
https://doi.org/10.1002/smtd.201700315
[5] B. Deng, et al., Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. [Online] 8(1) (2017, Apr) 1-7. Available: https://doi.org/10.1038/ncomms14474
[6] N. Youngblood, M. Li. Ultrafast photocurrent measurements of a black phosphorus photodetector. Appl. Phys. Lett. [Online] 110(5) (2017, Jan) 051102. Available: https://doi.org/10.1063/1.4975360
[7] C. Li, et al., Tunable bandgap and optical properties of black phosphorene nanotubes. Materials. [Online] 11(2) (2018, Feb) 304. Available: https://doi.org/10.3390/ma11020304
[8] M. Akbari, R. Faez. A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor. JOPN. [Online] 2(3) (2017, Aug) 1-2. Available: http://journals.miau.ac.ir/article_2427.html
[9] L. Huang, et al., Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS nano. [Online] 13(1) (2018, Dec) 913-21. Available: https://doi.org/10.1021/acsnano.8b08758
[10] M. Long, et al., Progress, challenges, and opportunities for 2D material-based photodetectors. Adv. Funct. Mater. [Online] 29(19) (2019, May) 1803807. Available: https://doi.org/10.1002/adfm.201803807
[11] K. Cho, J. Yang, Y. Lu. Phosphorene: An emerging 2D material. J. Mater. Res. [Online] 32(15) (2017, Aug) 2839-47. Available: https://doi.org/10.1557/jmr.2017.71
[12] L. Huang, et al., Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Appl. Mater. Interfaces. [Online] 9(41) (2017, Oct) 36130-6. Available: https://doi.org/10.1021/acsami.7b09713
[13] X. Wang, S. Lan. Optical properties of black phosphorus. Adv. Opt. Photonics. [Online] 8(4) (2016, Dec) 618-55. Available: https://doi.org/10.1364/AOP.8.000618
[14] T. Liu, et al., Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt. Express. [Online] 27(20) (2019, Sep) 27618-27. Available: https://doi.org/10.1364/OE.27.027618
[15] X. Chen, et al., Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. [Online] 8(1) (2017, Nov) 1-7. Available: https://doi.org/10.1038/s41467-017-01978-3
[16] M. Amani, et al., Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS nano. [Online] 11(11) (2017, Nov) 11724-31. Available: https://doi.org/10.1021/acsnano.7b07028
[17] S. Zhang, et al., Simulation investigation of strained black phosphorus photodetector for middle infrared range. Opt. Express. [Online] 25(20) (2017, Oct) 24705-13. Available: https://doi.org/10.1364/OE.25.024705
[18] M. Mansuri, et al., Numerical modeling of a nanostructure gas sensor based on plasmonic effect. JOPN. [Online] 4(2) (2019, May) 29-44. Available: http://jopn.miau.ac.ir/article_3476.html
[19] Q. Guo, et al., Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. [Online] 16(7) (2016, Jul) 4648-55. Available: https://doi.org/10.1021/acs.nanolett.6b01977
[20] M. Xu, et al., Black phosphorus mid-infrared photodetectors. Appl. Phys. B. [Online] 123(4) )2017, Apr) 130. Available: https://doi.org/10.1007/s00340-017-6698-7
[21] TY. Chang, et al., Ultra-broadband, high speed, and high-quantum-efficiency photodetectors based on black phosphorus. ACS Appl. Mater. Interfaces. [Online] 12(1) (2019, Dec) 1201-9. Available: https://doi.org/10.1021/acsami.9b13472
[22] X. Zong, et al., Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci. Appl. [Online] 9(1) (2020, Jul) 1-8. Available: https://doi.org/10.1038/s41377-020-00356-x
[23] L. Ye, et al., Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy. [Online] 37(2017, Jul) 53-60. Available: https://doi.org/10.1016/j.nanoen.2017.05.004
[24] Y. Liu, et al., Highly responsive broadband black phosphorus photodetectors. Chin. Opt. Lett. [Online] 16(2) (2018, Feb) 020002. Available: https://www.osapublishing.org/col/abstract.cfm?URI=col-16-2-020002
[25] J. Wu, et al., Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS nano. [Online] 9(8) (2015, Aug) 8070-7. Available: https://doi.org/10.1021/acsnano.5b01922
[26] M. Huang, et al., Broadband black‐phosphorus photodetectors with high responsivity. Adv. Mater. [Online] 28(18) (2016, May) 3481-5. Available: https://doi.org/10.1002/adma.201506352
[27] R. Kochar, S. Choudhary. MoS 2/phosphorene heterostructure for optical absorption in visible region. IEEE J. Quantum Electron. [Online] 54(4) (2018, Jun) 1-6. Available: 10.1109/JQE.2018.2850450.
[28] YM. Qing, HF. Ma, TJ. Cui. Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies. Opt. Express. [Online] 26(25) (2018, Dec) 32442-50. Available: https://doi.org/10.1364/OE.26.032442
[29] D. Dong, et al., Designing a nearly perfect infrared absorber in monolayer black phosphorus. Appl. Opt. [Online] 58(14) (2019, May) 3862-9. Available: https://doi.org/10.1364/AO.58.003862
[30] T. Liu, et al., Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt. Express. [Online] 27(20) (2019, Sep) 27618-27. Available: https://doi.org/10.1364/OE.27.027618
[31] R. Audhkhasi, ML. Povinelli. Gold-black phosphorus nanostructured absorbers for efficient light trapping in the mid-infrared. Opt. Express. [Online] 28(13) (2020, Jun) 19562-70. Available: https://doi.org/10.1364/OE.398641
[32] N. Sefidmooye Azar, et al., Long-Wave Infrared Photodetectors Based on 2D Platinum Diselenide atop Optical Cavity Substrates. ACS nano. [Online] 15(4) (2021, Mar) 6573-81. Available: https://doi.org/10.1021/acsnano.0c09739
[33] CH. Liu, et al., Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. [Online] 9(4) (2014, Apr) 273-8. Available: https://doi.org/10.1038/nnano.2014.31
[34] S. Salimpour, H.Rasooli. Impressive reduction of dark current in InSb infrared photodetector to achieve high temperature performance. JOPN. [Online] (2018, Oct) 3(4) 81-96. Available: http://jopn.miau.ac.ir/article_3265.html
[35] M. Hasani, R. Chegell. Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field. JOPN. [Online] 5(2) (2020, May) 49-64. Available: http://jopn.miau.ac.ir/article_4218.html
[36] Y. Yao, et al., High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. [Online] 14(7) (2014, Jul 9) 3749-54. Available: https://doi.org/10.1021/nl500602n
[37] M. Riaz, et al., Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE. Int. J. Comput. Mater. Sci. Eng. [Online] 6(03) (2017, Sep) 1750017. Available: https://doi.org/10.1142/S2047684117500178
[38] S. Jalaei, J. Karamdel, H. Ghalami-Bavil-Olyaee. Mid‐Infrared Photodetector Based on Selenium‐Doped Black Phosphorus. Phys. Status Solidi A. [Online] 217(23) (2020, Dec) 2000483. Available: https://doi.org/10.1002/pssa.202000483
[39] F. Ostovari, MK. Moravvej-Farshi. Photodetectors with armchair graphene nanoribbons and asymmetric source and drain contacts. Appl. Surf. Sci. [Online] 318 (2014, Nov) 108-12. Available: https://doi.org/10.1016/j.apsusc.2014.01.117
[40] AN. Rudenko, S. Yuan, MI. Katsnelson. Toward a realistic description of multilayer black phosphorus: From g w approximation to large-scale tight-binding simulations. Phys. Rev. B. [Online] 92(8) (2015, Aug) 085419. Available: https://doi.org/10.1103/PhysRevB.92.085419
[41] S. Datta. Nanoscale device modeling: the green’s function method. Superlattices Microstruct. [Online] 28(4) (2000, Oct) 253-78. Available: https://doi.org/10.1006/spmi.2000.0920
[42] M. Zavvari, Y.Zehforoosh. Study of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath. JOPN. [Online] 4(4) (2019, Dec) 53-64. Available: http://jopn.miau.ac.ir/article_3760_
[43] M. Long, et al., Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. [Online] 3(6) (2017, Jun) 1700589. Available: https://doi.org/10.1126/sciadv.1700589
[44] Y. Cai, G. Zhang, YW. Zhang. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. [Online] 4(1) (2014, Oct) 1-6. Available: https://doi.org/10.1038/srep06677
[45] Z. Nie, et al., Ultrafast photocarrier recombination dynamics in black phosphorus-molybdenum disulfide (BP/MoS2) heterostructure. arXiv preprint arXiv. [Online] 1811.04706. (2018, Nov) Available: https://arxiv.org/abs/1811.04706.
[46] L. Huang, et al., Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Appl. Mater. Interfaces. [Online] 9(41) (2017, Oct) 36130-6. Available: https://doi.org/10.1021/acsami.7b09713