Subject Areas : Journal of Optoelectronical Nanostructures
Seyyed Reza Hosseini 1 , Mahsa Bahramgour 2 , Nagihan Delibas 3 , Aligholi Niaei 4
1 - Department of Chemical Engineering, University of Tabriz, Tabriz, Iran
2 - Department of Chemical Engineering, University of Tabriz, Tabriz, Iran
3 - Department of Physics, Faculty of Art & Science, University of Sakarya, Sakarya,Turkey
4 - Department of Chemical Engineering, University of Tabriz, Tabriz, Iran
Keywords:
Abstract :
[1] S. Cichosz, A. Masek, and M. Zaborski. Polymer-based sensors: A review. Polymer testing. [online]. 67 (2018, May.) 342-348.
Available: https://doi.org/10.1016/j.polymertesting.2018.03.024
[2] W. Hou, Y. Xiao, G. Han, and J.-Y. Lin. The applications of polymers in solar cells: A review. Polymers. [online]. 11(1) (2019, Jan.) 143. Available: https://doi.org/10.3390/polym11010143.
[3] G. Li, R. Zhu, and Y. Yang. Polymer solar cells. Nature photonics. [online]. 6(3) (2012, Feb) 153-161.
Available: https://doi.org/10.1038/nphoton.2012.11.
[4] L.-B. Huang et al. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability. Journal of Power Sources. [online]. 378 (2018, Feb.) 483-490. Available: https://doi.org/10.1016/j.jpowsour.2017.12.082.
[5] M. Asghar, J. Zhang, H. Wang, and P. Lund. Device stability of perovskite solar cells–A review. Renewable and Sustainable Energy Reviews. [online]. 77 (2017, Sep.) 131-146.
Available: https://doi.org/10.1016/j.rser.2017.04.003.
[6] D. Wang, M. Wright, N. K. Elumalai, and A. Uddin. Stability of perovskite solar cells. Solar Energy Materials and Solar Cells. [online]. 147 (2016, Apr.) 255-275.
Available: https://doi.org/10.1016/j.solmat.2015.12.025.
[7] S. Roy and S. Datta. Applications of Polymers in Perovskite Solar Cells: A Review. Ann. Chem. Sci. Res. [online]. 2 (2020, May) 1-4.
Available: https://doi.org/ 10.31031/ACSR.2020.02.000531
[8] P. Da and G. Zheng. Tailoring interface of lead-halide perovskite solar cells. Nano Research. [online]. 10(5) (2017, Jan.) 1471-1497.
Available: https://doi.org/10.1007/s12274-016-1405-2
[9] H. Zhou et al. Interface engineering of highly efficient perovskite solar cells. Science. [online]. 345(6196) (2014, Aug.) 542-546.
Available: https://doi.org/10.1126/science.1254050
[10] W. Yu et al. Effect of ultraviolet absorptivity and waterproofness of poly (3, 4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. Journal of Power Sources. [online]. 358 (2017, Aug). 29-38.
Available: https://doi.org/10.1016/j.jpowsour.2017.05.007
[11] D. Wei et al. Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale. [online]. 11(3) (2019, Dec.) 1228-1235.
Available: https://doi.org/10.1039/C8NR07638C
[12] D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. Johansson. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. The journal of physical chemistry letters. [online]. 4(9) (2013, Apr.) 1532-1536.
Available: https://doi.org/10.1021/jz400638x
[13] S. N. Jafari, A. Ghadimi, and S. Rouhi. Strained Carbon Nanotube (SCNT) thin layer effect on GaAs solar cells efficiency. Journal of Optoelectronical Nanostructures. [online]. 5(4) (2020, Autumn).
Available: 20.1001.1.24237361.2020.5.4.6.7
[14] A. Abdolahzadeh Ziabari, S. Royanian, R. Yousefi, and S. Ghoreishi. Performance improvement of ultrathin CIGS solar cells using Al plasmonic nanoparticles: The effect of the position of nanoparticles. Journal of Optoelectronical Nanostructures. [online]. 5(4) (2020, Dec.) 17-32.
Available: https://doi.org/20.1001.1.24237361.2020.5.4.2.3 2020.
[15] H. Izadneshan and G. Solookinejad. Effect of annealing on physical properties of Cu2ZnSnS4 (CZTS) thin films for solar cell applications. Journal of Optoelectronical Nanostructures. [online]. 3(2) (2018, Spring). 19-28. Available: https://doi.org/20.1001.1.24237361.2018.3.2.2.5.
[16] D. Jalalian, A. Ghadimi, and A. Kiani Sarkaleh. Investigation of the effect of band offset and mobility of organic/inorganic HTM layers on the performance of Perovskite solar cells. Journal of Optoelectronical Nanostructures. [online]. 5(2) (2020, Spring) 65-78.
Available: https://doi.org/20.1001.1.24237361.2020.5.2.6.3
[17] S. Rafiee Rafat, Z. Ahangari, and M. M. Ahadian. Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers. Journal of Optoelectronical Nanostructures. [online]. 6(2) (2021, Spring) 75-90. Available: https://doi.org/10.30495/JOPN.2021.28208.1224
[18] Y. Cai et al. Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers. Electrochimica Acta. [online]. 261 (2018, Jan.) 445-453.
Available: https://doi.org/10.1016/j.electacta.2017.12.135
[19] S. HOSSEİNİ, M. BAHRAMGOUR, A. NİAİE, and N. DELİBAŞ. Interface Modification by Using an Ultrathin P3HT Layer in a Custom Perovskite Solar Cell Through SCAPS-1D Simulation. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. [online]. 25(5) (2021, Oct.) 1168-1179. Available: https://doi.org/10.16984/saufenbilder.947735
[20] K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, and Y. Lin. Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electronics. [online]. 126 (2016, Dec) 75-80.
Available: https://doi.org/10.1016/j.sse.2016.09.012
[21] M. Burgelman, P. Nollet, and S. Degrave. Modelling polycrystalline semiconductor solar cells. Thin solid films [online]. 361 (2000, Feb) 527-532. Available: https://doi.org/10.1016/S0040-6090(99)00825-1
[22] A. R. Uhl. Metal counter electrodes for perovskite solar cells. Counter Electrodes for Dye‐sensitized and Perovskite Solar Cells. [online]. 2 (2018, Sep.) 421-456.
Available: https://doi.org/10.1002/9783527813636.ch17
[23] I. Hussain, H. P. Tran, J. Jaksik, J. Moore, N. Islam, and M. J. Uddin. Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials. [online]. 1(3) (2018, Nov.) 133-154. Available: https://doi.org/10.1007/s42247-018-0013-1
[24] K. Ahmadi, A. A. Ziabari, K. Mirabbaszadeh, and S. Ahmadi. Synthesis of TiO2 nanotube array thin films and determination of the optical constants using transmittance data. Superlattices and Microstructures. [online]. 77 (2015, Jan) 25-34. Available: https://doi.org/10.1016/j.spmi.2014.10.024
[25] A. Way et al. Fluorine doped tin oxide as an alternative of indium tin oxide for the bottom electrode of semi-transparent organic photovoltaic devices. AIP Advances. [online]. 9(8) (2019, Aug).
Available: https://doi.org/10.1063/1.5104333
[26] E. Karimi and S. Ghorashi. Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells. Optik [online]. 130 (2017, Feb.) 650-658.
Available: https://doi.org/10.1016/j.ijleo.2016.10.122
[27] R. Rutsch and J. Toušek. Mobility of Holes and Polarons in Polyaniline Thin Films Determined by Impedance Spectroscopy Measurements. Presented at WDS'18 Proceedings of Contributed Papers — Physics. [online]. (2018) 180-186.
Available: https://www.mff.cuni.cz/veda/konference/wds/proc/pdf18/WDS18_28_f4_Rutsch.pdf