Subject Areas : Journal of Optoelectronical Nanostructures
Mostafa Arjomandi Lari 1 , saeed parhoodeh 2 , Ghader Alahverdi 3 , Ali Rohani Sarvestani 4
1 - Department of Electrical Engineering, Dariun branch, Islamic Azad University,
Dariun, Iran
2 - Physics Department, Shiraz branch, Islamic Azad University, Shiraz, Iran
3 - Physics Department, Shiraz branch, Islamic Azad University, Shiraz, Iran & Department of Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
4 - Physics Department, Shiraz branch, Islamic Azad University, Shiraz, Iran
Keywords:
Abstract :
[1] A. Abdolahzadeh Ziabari, A. Bagheri Khatibani, Optical properties and thermal stability of solar selective absorbers based on Co–Al2O3 cermets, Chinese J. Phys. 55 (2017) 876–885.
https://doi.org/https://doi.org/10.1016/j.cjph.2017.02.015.
[2] Y.R. Mukhortova, A.S. Pryadko, R. V Chernozem, I.O. Pariy, E.A. Akoulina, I. V Demianova, I.I. Zharkova, Y.F. Ivanov, D. V Wagner, A.P. Bonartsev, R.A. Surmenev, M.A. Surmeneva, Fabrication and characterization of a magnetic biocomposite of magnetite nanoparticles and reduced graphene oxide for biomedical applications, Nano-Structures & Nano-Objects. 29 (2022) 100843.
[3] H. Gyulasaryan, L. Avakyan, A. Emelyanov, N. Sisakyan, S. Kubrin, V. Srabionyan, A. Ovcharov, C. Dannangoda, L. Bugaev, E. Sharoyan, M. Angelakeris, M. Farle, M. Spasova, K. Martirosyan, A. Manukyan, Iron-cementite nanoparticles in carbon matrix: Synthesis, structure and magnetic properties, J. Magn. Magn. Mater. 559 (2022) 169503.
https://doi.org/https://doi.org/10.1016/j.jmmm.2022.169503.
[4] A. Abdolahzadeh Ziabari, N. Mohabbati Zindanlou, J. Hassanzadeh, S. Golshahi, A. Bagheri Khatibani, Fabrication and study of single-phase high-hole-mobility CZTS thin films for PV solar cell applications: Influence of stabilizer and thickness, J. Alloys Compd. 842 (2020) 155741. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.155741.
[5] K. Ahmadi, A. Abdolahzadeh Ziabari, K. Mirabbaszadeh, S. Ahmadi, Synthesis of TiO2 nanotube array thin films and determination of the optical constants using transmittance data, Superlattices Microstruct. 77 (2015) 25–34. https://doi.org/https://doi.org/10.1016/j.spmi.2014.10.024.
[6] Y. Zarea, S. Parhoodeh, L. Shahryari, A. Karbakhsh, Synthesizing and Characterization of Monoclinic and Tetragonal Phases of Zirconium Oxide (ZrO2) Nanofibers with the Aid of Electrospinning Technique, J. Optoelectron. Nanostructures. 5 (2020) 39–48.
[7] Y. Wang, Q. Liu, Y. Sun, R. Wang, Magnetic field modulated SERS enhancement of CoPt hollow nanoparticles with sizes below 10 nm, Nanoscale. 10 (2018) 12650–12656. https://doi.org/10.1039/c8nr03781g.
[8] azar bagheri, hana amini, saeed raayati, ZrO2 Nanoparticles: Optical Properties of Tetragonal Phase and Enhanced Photocatalytic Activity, J. Optoelectron. Nanostructures. 5 (2020) 13–24. http://jopn.marvdasht.iau.ir/article_4215.html.
[9] E.M. Materón, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C.J. Dalmaschio, F. Davis, F.M. Shimizu, Magnetic nanoparticles in biomedical applications: A review, Appl. Surf. Sci. Adv. 6 (2021) 100163.
https://doi.org/https://doi.org/10.1016/j.apsadv.2021.100163.
[10] P. Kush, P. Kumar, R. Singh, A. Kaushik, Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application, Asian J. Pharm. Sci. 16 (2021) 704–737.
https://doi.org/https://doi.org/10.1016/j.ajps.2021.05.005.
[11] H.S. Sharma, P.K. Menon, J.V. Lafuente, Z.P. Aguilar, Y.A. Wang, D.F. Muresanu, H. Mössler, R. Patnaik, A. Sharma, The role of functionalized magnetic iron oxide nanoparticles in the central nervous system injury and repair: New potentials for neuroprotection with cerebrolysin therapy, J. Nanosci. Nanotechnol. 14 (2014) 577–595. https://doi.org/10.1166/jnn.2014.9213.
[12] T. Razegh, V. Setoodeh, S. Pilban Jahromi, Influence of particle size on Magnetic behavior of nickel oxide nanoparticles, J. Optoelectron. Nanostructures. 2 (2017) 11–18. http://jopn.marvdasht.iau.ir/article_2420.html.
[13] M. Amoohadi, M. Mozaffari, A. Gharaati, M. Rezazadeh, A Comparative Study of Insulators on Magnetic Properties of Sendust Based Nanocomposite Powder Cores, J. Optoelectron. Nanostructures. 3 (2018) 1–14. http://jopn.marvdasht.iau.ir/article_3249.html.
[14] M. Mahdavi Matin, M. Hakimi, M. Mazloum-Ardakani, The effect of preparation method and presence of impurity on structural properties and morphology of iron oxide, J. Optoelectron. Nanostructures. 2 (2017) 1–8. http://jopn.marvdasht.iau.ir/article_2195.html.
[15] M. Ajdary, M.A. Moosavi, M. Rahmati, M. Falahati, M. Mahboubi, A. Mandegary, S. Jangjoo, R. Mohammadinejad, R.S. Varma, Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity, Nanomaterials. 8 (2018) 634. https://doi.org/10.3390/nano8090634.
[16] N. Zhu, H. Ji, P. Yu, J. Niu, M.U. Farooq, M.W. Akram, I.O. Udego, H. Li, X. Niu, Surface modification of magnetic iron oxide nanoparticles, Nanomaterials. 8 (2018) 810. https://doi.org/10.3390/nano8100810.
[17] F.A. Khan, D. Almohazey, M. Alomari, S.A. Almofty, Impact of nanoparticles on neuron biology: Current research trends, Int. J. Nanomedicine. 13 (2018) 2767–2776. https://doi.org/10.2147/IJN.S165675.
[18] V.I. Shubayev, T.R. Pisanic, S. Jin, Magnetic nanoparticles for theragnostics, Adv. Drug Deliv. Rev. 61 (2009) 467–477. https://doi.org/10.1016/j.addr.2009.03.007.
[19] A. Ali, H. Zafar, M. Zia, I. ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol. Sci. Appl. 9 (2016) 49–67. https://doi.org/10.2147/NSA.S99986.
[20] R. Rasheed, V. Meera, Synthesis of Iron Oxide Nanoparticles Coated Sand by Biological Method and Chemical Method, Procedia Technol. 24 (2016) 210–216. https://doi.org/10.1016/j.protcy.2016.05.029.
[21] M. Osial, P. Rybicka, M. Pękała, G. Cichowicz, M.K. Cyrański, P. Krysiński, Easy synthesis and characterization of holmium-doped SPIONs, Nanomaterials. 8 (2018) 430. https://doi.org/10.3390/nano8060430.
[22] R. Bhandari, P. Gupta, T. Dziubla, J.Z. Hilt, Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles, Mater. Sci. Eng. C. 67 (2016) 59–64. https://doi.org/10.1016/j.msec.2016.04.093.
[23] X. Wang, R. Niessner, D. Knopp, Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles, Sensors (Switzerland). 14 (2014) 21535–21548. https://doi.org/10.3390/s141121535.
[24] J. Estelrich, E. Escribano, J. Queralt, M.A. Busquets, Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery, Int. J. Mol. Sci. 16 (2015) 8070–8101. https://doi.org/10.3390/ijms16048070.
[25] J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: Mechanisms, molecular targets and applications, Nat. Rev. Microbiol. 11 (2013) 371–384. https://doi.org/10.1038/nrmicro3028.
[26] J.P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.C. Bacri, F. Gazeau, Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc. 129 (2007) 2628–2635. https://doi.org/10.1021/ja067457e.