Manuscript ID : JOPN-2304-1289 (R2)
Visit : 121
Page: 81 - 107
10.30495/jopn.2023.31803.1289
20.1001.1.24237361.2023.8.2.6.4
Article Type:
Original Research
Subject Areas :
Journal of Optoelectronical Nanostructures
Rajab Yahyazadeh
1
,
Zahra Hashempour
2
1 - 1Department of Physics, Khoy Branch, Islamic Azad University, Khoy, Iran.
2 - 1Department of Physics, Khoy Branch, Islamic Azad University, Khoy, Iran.
Received: 2023-04-24
Accepted : 2023-06-05
Published : 2023-05-01
Keywords:
References:
[1] David, N. G. Young, C. Lund, M. D. Craven. Compensation between radiative and Auger recombinations in III-nitrides: The scaling law of separated-wavefunction recombinations. Appl. Phys. Lett. 115 (2019) 193502.Available:https://iopscience.iop.org/article/10.1149/2.0372001JSS
[2] K. Tan, W. Sun, J. J. WiererJr. N. Tansu. Effect of interface roughness on Auger recombination in semiconductor quantum wells. AIP Advances. 7, 035212 (2017). Available: https://pubs.aip.org/aip/adv/article/7/3/035212/1023080
[3] Steiauf, E. Kioupakis, C. G. Van de Walle. Auger Recombination in GaAs from First Principles, ACS Photonics. 1 (2014) 643. Available: https://pubs.acs.org/doi/abs/10.1021/ph500119q
[4] P. Han, C.H. Oh, D.G. Zheng, H. Kim, J.I. Shim, K. S. Kim, D. S. Shin. Analysis of nonradiative recombination mechanisms and their impacts on the device performance of InGaN/GaN light-emitting diodes. Jpn. J. Appl. Phys.54 (2015) 02BA01. Available: https://iopscience.iop.org/article/10.7567/JJAP.54.02BA01
[5] Liu, C. Haller, Y. Chen, T. Weatherly, J.-F. Carlin, G. Jacopin, R. Butté, N. Grandjean. Impact of defects on Auger recombination in c-plane InGaN/GaN single quantum well in the efficiency droop regime. Appl. Phys. Lett. 116 (2020) 222106. Available: https://pubs.aip.org/aip/apl/article/116/22/222106/38539
[6] Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett, 98, (2011) 161107. Available: https://pubs.aip.org/aip/apl/article-abstract/98/16/161107/340399
[7] Piprek. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A. 207(10) (2010) 2217–2225. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201026149
[8] Auf der Maur, G. Moses, J. M. Gordon, X. Huang, Y. Zhao, E. A. Katz. Temperature and intensity dependence of the open-circuit voltage of InGaN/GaN multi-quantum well solar cells. Sol. Energy Mater Sol. Cells. 230 (2021) 111253. Available: https://www.sciencedirect.com/science/article/pii/S092702482100297X
[9] Sefidgar, H. R. Saghai, H. G. K. Azar. Enhancing Efficiency of Twobond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures. 4(2) (2019) 84-102. Available: https://jopn.marvdasht.iau.ir/article_3480_0b715e5dbfb8c90033530e34eb33a84a.pdf
[10] Piprek, F. Römer, B. Witzigmann. On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett. 106 (2015) 101101. Available: https://www.nusod.org/piprek/piprek15apl.pdf
[11] -Y. Ryu, G.H. Ryu, C. Onwukaeme. B. Ma, Temperature dependence of the Auger recombination coefficient in InGaN/GaN multiple-quantum-well light-emitting diodes. Opt. Express. 28(19) (2020) 27459. Available: https://pubmed.ncbi.nlm.nih.gov/32988039
[12] Cheng, Z. Li, J. Zhang, X. Lin, D. Yang, H. Chen, S. Wu, S. Yao. Advantages of InGaN–GaN–InGaN Delta Barriers for InGaN-Based Laser Diodes. Nanomaterials. 11 (2021) 2070. Available: https://www.mdpi.com/2079-4991/11/8/2070
[13] Picozzi, R. Asahi, C. B. Geller, A. J. Freeman. Accurate First-Principles Detailed-Balance Determination of Auger Recombination and Impact Ionization Rates in Semiconductors. Phys. Rev. Lett. 89(19) (2002) 197601. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.197601
[14] S. Polkovnikov, G. G. Zegrya. Auger recombination in semiconductor quantum wells. Phys. Rev. B, 58(7) (1998) 4039-4056. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.4039
[15] Piprek. Efficiency Models for GaN-Based Light-Emitting Diodes: Status and Challenges. Materials, 13 (2020) 5174. Available: https://www.mdpi.com/1996-1944/13/22/5174
[16] M. McMahon, E. Kioupakis, S. Schulz. Atomistic analysis of Auger recombination in c-plane (In,Ga)N/GaN quantum wells: Temperature-dependent competition between radiative and nonradiative recombination. Phys. Rev. B. 105 (2022) 195307. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.195307
[17] Belmabrouk,, B. Chouchen , E. M. Feddi , F. Dujardin , I. Tlili , M. B. Ayed, M.Hichem Gazzah. Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors. Optik, 207 (2020) 163883. Available: https://www.sciencedirect.com/science/article/pii/S0030402619317814
[18] X Huang et al. Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano. 10(5) (2016) 5145. Available: https://pubs.acs.org/doi/10.1021/acsnano.6b00417
[19] K. Ridley, W. J. Schaff, and L. F. Eastman. Theoretical model for polarization superlattices: Energy levels and intersubband transitions. J. Appl. Phys. 94 (2003) 3972. Available: https://pubs.aip.org/aip/jap/article-abstract/94/6/3972/292303
[20] Ambacher, J. Majewski, C. Miskys, et al. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures J. Phys. Condens. Matter. 14 (2002) 3399. Available: https://iopscience.iop.org/article/10.1088/0953-8984/14/13/302
[21] Asgari, K. Khalili. Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell. Sol. Energy Mater Sol. Cells. 95 (2011) 3124–3129. Available: https://www.sciencedirect.com/science/article/pii/S0927024811003898
[22] Fiorentini. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80 (2002) 1204. Available: https://pubs.aip.org/aip/apl/article-abstract/80/7/1204/511321
[23] Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate. J. Appl. Phys. 85 (1999) 2385. Available: https://pubs.aip.org/aip/jap/article-abstract/85/4/2385/491363
[24] J. Bala, A. J. Peter, C. W. Lee. Simultaneous effects of pressure and temperature on the optical transition energies in a Ga 0.7In 0.3N/GaN quantum ring. Chem. Phys. 495 (2017) 42–47. Available: https://www.sciencedirect.com/science/article/pii/S0301010417304160
[25] L. Chuang, C. S. Chang. A band-structure model of strained quantum-well wurtzite semiconductors. Semicond. Sci. Technol. 12 (1997) 252–263. Available:
[26] L. Chuang and C. S. Chang. k.p method for strained wurtzite semiconductors. Phys. Rev. B. 54(4) (1996) 2491-2504. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.2491
[27] Piprek and S. Nakamura. Physics of high-power InGaN/GaN lasers. IEE Proceedings – Optoelectronics. 149(4) (2002) 145–151. Available: https://www.nusod.org/piprek/piprek02iee.pdf
[28] Venkatachalam, P.D. Yoder, B. Klein, A. Kulkarni, Nitrid band-structure model in quantum well laser simulater. Opt Quant Electron. 40 (2008) 295. https://link.springer.com/article/10.1007/s11082-008-9199-4
[29] D. Andrew, E. O. O’Reilly. Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well laser structure. Appl. Phys. Lett. 84 (2004) 182. Available: https://pubs.aip.org/aip/apl/article-abstract/84/11/1826/531040
[30] Wang, P. V. Allmen, J.-P. Leburton, K. J. Linden. Auger Recombination in Long- Wavelength Strained-Layer Quantum-Well Structures. IEEE J. Quantum Electron. 31(5) (1995) 864-875. Available: https://ieeexplore.ieee.org/document/375931
[31] Asgari, M. Kalafi, L. Faraone. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Physica E. 28 (2005) 491–499. Available: https://www.sciencedirect.com/science/article/pii/S1386947705002183
[32] Watson-Parris, M. J. Godfrey, P. Dawson. Carrier localization mechanisms in InxGa1−xN/GaN quantum wells. Phys. Rev. B. 83 (2011) 115321. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.115321
[33] Yahyazadeh. Effect of hydrostatic pressure on the radiative current density of InGaN/GaN multiple quantum well light emitting diodes. Opt Quant Electron. 53 (2021) 571. Available: https://link.springer.com/article/10.1007/s11082-021-03236-9
[34] R Yahyazadeh, Z Hashempour. Numerical Modeling of Electronic and Electrical Characteristics of Al Ga N / GaN Multiple Quantum Well Solar Cells, J. Optoelectron. Nanostruct. 5(3) (2020) 81. Available: https://jopn.marvdasht.iau.ir/article_4406_670911b9469aba0ae5aa327d5bb3b34e.pdf
[35] Yahyazadeh. Effect of hydrostatic pressure on the photocurrent density of InGaN/GaN multiple quantum well solar cells. Indian Journal of Physics. 96 (2022) 2815. Available: https://link.springer.com/article/10.1007/s12648-021-02218-7
[36] Yahyazadeh. Numerical modeling of electronic and electrical characteristics of InGaN/GaN multiple quantum well solar cells. Journal of Photonics for Energy. 10 (2020) 045504. Available: https://www.spiedigitallibrary.org/journals/journal-of-photonics-for energy//10.1117/1.JPE.10.045504
[37] yahyazadeh, Z. Hashempour. Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures. 6(2) (2021) 1. Available: https://jopn.marvdasht.iau.ir/article_4768_17586fedc153930972ae0f3cb2317226.pdf
[38] Kioupakis, D. Steiauf, P. Rinke, K.ris T. Delaney, C. G. Van de Walle. First-principles calculations of indirect Auger recombination in nitride semiconductors. Phys. Rev. B. 92 (2015) 035207. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.035207
[39] Chouchen, M. H. Gazzah, A. Bajahzar, H. Belmabrouk. Numerical modeling of InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects. AIP Adv. 9 (2019) 045313. Available: https://pubs.aip.org/aip/adv/article/9/4/045313/1076706
[40] Jogai. Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 93 (2003) 1631. Available: https://pubs.aip.org/aip/jap/article-abstract/93/3/1631/293059
[41] Jogai. Parasitic Hole Channels in AlGaN/GaN Heterojunction Structures. Phys. stat. sol (b). 233 (2002) 506. Available:https://onlinelibrary.wiley.com/doi/epdf/10.1002/1521-3951(200210)233:3<506::aid-pssb506>3.0.co;2-r
[42] Horri, S. Z. Mirmoeini. Analysis of Kirk Effect in Nanoscale Quantum Well Heterojunction Bipolar Transistor Laser. Journal of Optoelectronical Nanostructures. 5(2) (2020) 25-38. Available: https://jopn.marvdasht.iau.ir/article_4216_16b679cf6224faf5b5bb84a468ea2283.pdf
[43] Amirhoseiny, G. Alahyarizadeh. Enhancement of Deep Violet InGaN Double Quantum WellsLaser Diodes Performance Characteristics Using Superlattice Last Quantum Barrier. Journal of Optoelectronical Nanostructures. 6(2) (2021) 107-120. Available: https://jopn.marvdasht.iau.ir/article_4776_4941a2547e09c61dfc979b5fed25a722.pdf
[44] B. Yekta, H. Kaatuzian. Design considerations to improve high temperature characteristics of 1.3 μm AlGaInAs-InP uncooled multiple quantum well lasers: Strain in barriers. Optik. 122 (2011) 514. Available:https://www.sciencedirect.com/science/article/pii/S0030402610001567
[45] Hader; J.V. Moloney, S.W. Koch. Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers. IEEE J. Quantum Electron. 41(10) (2005) 1217- 1226. Available: https://ieeexplore.ieee.org/document/1510789
[46] H. Tan, G. L. Snider, L. D. Chang, E. L. Hu. A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh. J. Appl. Phys. 68 (1990) 4071. Available: https://pubs.aip.org/aip/jap/article-abstract/68/8/4071/19325
[47] Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn. High-Power and High-Efficiency InGaN-Based Light Emitters. EEE Trans Electron Devices. 57(1) (2010) 79 – 87. Available: https://ieeexplore.ieee.org/document/5345808
[48] Bertazzi, X. Zhou, M. Goano, G. Ghione, E. Bellotti. Auger recombination in InGaN/GaN quantum wells: A full-Brillouin-zone study. Appl. Phys. Lett. 103 (2013) 081106. Available: https://pubs.aip.org/aip/apl/article-abstract/103/8/081106/130246
[49] Bertazzi, M. Goano, E. Bellotti. A numerical study of Auger recombination in bulk InGaN. Appl. Phys. Lett. 97 (2010) 231118. Available: https://pubs.aip.org/aip/apl/article abstract/97/23/231118/325187