Subject Areas : Journal of Optoelectronical Nanostructures
Karim Milanchian 1 , Hakimeh Mohammadpour 2
1 - Department of Physics, Payame Noor University, Tehran, Iran
2 - Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran
Keywords:
Abstract :
[1] Hasanirokh, A Asgari and S Mohammadi, Infrared navigation—Part I: An assessment of feasibility, Journal of the European Optical Society-Rapid Publications, 17 (Dec. 2021) 1-10.
Available:https://jeos.springeropen.com/articles/10.1186/s41476-021-00173-8
[2] H. Mohammadpour, Quantum dot resonant tunneling FET on graphene, Physica E, 81 (Jul. 2016) 91. Available:https://www.sciencedirect.com/science/article/abs/pii/S1386947716300649
[3] D. Ghosh, K. Sarkar K, P. Devi P, K. H. Kim and P. Kumar, Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices, Renewable and Sustainable Energy Reviews, 135 (Jan. 2021) 110391.
Available:https://www.sciencedirect.com/science/article/abs/pii/S1364032120306791
[4] X. Shi, X. Liu and H. Zeng, ZrO2 quantum dots/graphene phototransistors for deep UV detection, Materials Research Bulletin, 96 (Dec. 2017) 458-462. Available:https://www.sciencedirect.com/science/article/abs/pii/S002554081731334X
[5] H Agarwal et al Engineering Negative Differential Resistance in NCFETs for Analog Applications, IEEE Transactions on Electron Devices, 68 (May 2018) 2033-2039.
Available: https://ieeexplore.ieee.org/document/8331968
[6] I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. L. Koppens & G. Konstantatos, Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor, Nat. Commun., 7 (Jun. 2016) 11954.
Available: https://www.nature.com/articles/ncomms11954
[7] V. Ryzhii, The theory of quantum-dot infrared phototransistors, Semiconductor Science and Technology, 11 (Jan. 1996) 759.
Available: https://iopscience.iop.org/article/10.1088/0268-1242/11/5/018
[8] Konstantatos, M. Badioli, L. Gaudreau Gerasimos, J. Osmond, M. Bernechea, F. Pelayo G. Arquer, F. Gatti & F. H. L. Koppens. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech,7(2012, May.) 363–368.
[9] Akbari Eshkalak, R. Faez. A computational study on the performance of Graphene Nanoribbon Field Effect Transistor. Journal of Optoelectronical Nano Structures, 2(3) (2017, Aug.) 1-12.
Available: https://jopn.marvdasht.iau.ir/article_2427.html
[10] Rohani, A. A. Emrani Zarandi. Designing a novel high-speed ternary-logic multiplier using GNRFRT technology. Journal of Optoelectronical Nano Structures, 8(1) (2023, Jan.) 1-12.
[11] Rahimian. Controlling ambipolar current in a junctionless Tunneling FET emphasizing on depletion region extension. Journal of Optoelectronical Nano Structures, 8(1) (2023, Jan.) 13-31. Available: https://jopn.marvdasht.iau.ir/article_5899.html
[12] V. Khademhosseini, D. Dideban and M. Ahmadi. Current Analysis of Single Electron Transistor Based on Graphene Double Quantum Dots. ECS Journal of Solid State Science and Technology,9(2020, ) 021003. Available: https://iopscience.iop.org/article/10.1149/2162-8777/ab6980
[13] H. Mohammadpour, Double Quantum Dot FET on graphene. JETP Letters, 114 (11) (2021 Nov.) 707-712. Available:https://link.springer.com/article/10.1134/S002136402123003X
[14] S. Afshari, J. Jahanbin Sardroodi, H. Mohammadpour, Electronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT. Journal of Nanoanalysis, 4(4) (2017, Sept.) 272-279. Available:https://jnanoanalysis.tms.iau.ir/article_539940.html
[15] Salimpour, H. Rasooli Saghai, Impressive Reduction of Dark Current in InSb Infrared Photodetector to achieve High Temperature Performance. Journal of Optoelectronical Nano Structures, 3(4) (2018, Oct.) 81-96. Available:https://jopn.marvdasht.iau.ir/article_3265_698c93521a209e8daff27bb7ec5f43d5.pdf
[16] Ghajarpour-Nobandegani, M. J. Karimi, H. Rahimi, Tunable Terahertz Absorber Based on Graphene Disk Array. Journal of Optoelectronical Nano Structures, 8(2) (2023, May) 1-14. Available:https://jopn.marvdasht.iau.ir/article_5921.html
[17] Jabbari, M. Dehghan, M. K. Moravvej Farshi, G. Darvish, M. Ghaffari-miab. Ultra-Compact Bidirectional Terahertz Switch Based on Resonance in Graphene Ring and Plate. Journal of Optoelectronical Nano Structures, 4(4) (2019, Dec.) 99-112. Available:https://jopn.marvdasht.iau.ir/article_3761_d2fa3599c18c16e0315c6611e3236684.pdf
[18] Riahinasab, E. Darabi. Analytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL. Journal of Optoelectronical Nano Structures, 3(2) (2018, Jun.) 65-86. Available:https://jopn.marvdasht.iau.ir/article_2876_3ac61163b777771c8c771cc5f808bb45.pdf
[19] Hakimian, M. R. Shayesteh, M. Moslemi. A Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers. Journal of Optoelectronical Nano Structures, 4(3) (2019, Aug.) 1-16. Available:https://jopn.marvdasht.iau.ir/article_3616_eb2f17e255bbbe8e99a32629674ad938.pdf
[20] Rezvani Jalal, M. Habibi, Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser. Journal of Optoelectronical Nano Structures, 2(3) (2017, May) 61-70. Available:https://jopn.marvdasht.iau.ir/article_2425_968b2c48351292f237924ada4af47699.pdf
[21] P Tulewicz, K Wrześniewski and I Weymann. Spintronic transport through a double quantum dot-based spin valve with noncollinear magnetizations. Journal of Magnetism and Magnetic Materials,546(2022, ) 168788. Available: https://www.sciencedirect.com/science/article/abs/pii/S0304885321010118
[22] A Bordoloi, V Zannier, L Sorba, C Schönenberger and A Baumgartner. A double quantum dot spin valve. Communications Physics 3(2020, ) 135. Available: https://www.nature.com/articles/s42005-020-00405-2
[23] T. Ghaffary, F. Rahimi, Y. Naimi, H. Khajeazad, Study of the spin-orbit interaction effectson energy levels and the absorption coefficients of spherical quantum dot and quantum antidote under the magnetic field. Journal of Optoelectronical Nano Structures, 6(2) (2021, May) 55-74. Available: https://jopn.marvdasht.iau.ir/article_4769.html
[24] L Gyongyosi, S Imre S. A Survey on quantum computing technology. Computer Science Review 31(2019, ) 51-71.
Available: https://www.sciencedirect.com/science/article/abs/pii/S1574013718301709
[25] M. R. Mohebbifar. Study of the Purcell factor of a single photon source based on quantum dot nanostructure for quantum computing applications. Journal of Optoelectronical Nano Structures, 6(4) (2021, Oct.) 95-108. Available: https://jopn.marvdasht.iau.ir/article_5052.html
[26] M. Amirhoseiny, G. Alahyarizadeh. Enhancement of Deep Violet InGaN Double Quantum Wells Laser Diodes Performance Characteristics Using Superlattice Last Quantum Barrier. Journal of Optoelectronical Nano Structures, 6(2) (2021, May) 107-120. Available:https://jopn.marvdasht.iau.ir/article_4776_4941a2547e09c61dfc979b5fed25a722.pdf
[27] A. Asrar, M. Servatkhah, M. Yasrebi. Providing a Bird Swarm Algorithm based on Classical Conditioning Learning Behavior and Comparing this Algorithm with sinDE, JOA, NPSO and D-PSO-C Based on Using in Nanoscience. Journal of Optoelectronical Nano Structures, 5(3) (2020, Aug.) 39-58. Available:https://jopn.marvdasht.iau.ir/article_4403_36539ec52741c9b9bd4c97d2445d2d1e.pdf
[28] S Datta. Quantum Transport: Atom to Transistor. New York: Cambridge University Press, 2005, 183-249.
[29] K. I. Bolotin, K. J. Sikes, Z. Zhang, M. Klima, G. Fudenberg , J. Hone, P. Kim , H.L. Stormer . Ultrahigh electron mobility in suspended graphene. Solid State Commun. 3(2008, ) 351-355. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038109808001178
[30] R Lake, G Klimeck, R C Bowen and D JovanovicSingle and Multiband Modeling of Quantum Electron Transport Through Layered Semiconductor Devices. Journal of Applied Physics 81(1997, ) 7845-7869.