Subject Areas : Journal of Optoelectronical Nanostructures
Reyhane Ezadi 1 , Masoomeh Dezhkam 2
1 - Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 - Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
Keywords:
Abstract :
[1] W. Wang, J. Wang, Zh. Cheng, Z. Yang, H. Yin, X. Ma, Y. Zhang, M. Yang, H. Hu, Y. Huang, X. Numerical Analysis of the Electrically Pumped 1.3 μm InAs/InGaAs Quantum Dot Microdisk Lasers on Silicon with an Output Waveguide. Ren, Physica E [Online]. 108 (2019, Apr.) 404-410. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947718308361
[2] N. N. Ledentsov, V. A. Shchukin, Yu. M. Shernyakov, M. M. Kulagina, A. S. Payusov, N. Yu. Gordeev, M. V. Maximov, A. E. Zhukov, L. Ya. Karachinsky, T. Denneulin, N. Cherkashin. Room Temperature Yellow InGaAlP Quantum Dot Laser. Solid State Electron. [Online]. 155 (2019, May) 129-138. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038110118305549
[3] A. A. Rajhi, K. M. Abd Alaziz et al. Enhancing the performance of quantum dot solar cells through halogen adatoms on carboxyl edge-functionalized graphene quantum dots. Journal of Photochemistry and Photobiology A [Online]. 447 (2024, Jan.) 115240. Available: https://www.sciencedirect.com/science/article/abs/pii/S1010603023007050
[4] D. H. Phuc, H. T. Tung. Quantum dot sensitized solar cell based on the different photoelectrodes for the enhanced performance. Sol. Energ. Mat. Sol. C. [Online]. 196 (2019, Jul.) 78–83. Available: https://www.sciencedirect.com/science/article/abs/pii/S0927024819301576
[5] S. Siontas, D. Li, H. Wang, A. A.V.P.S, A. Zaslavsky, D. Pacifici. High-performance germanium quantum dot photodetectors in the visible and near infrared. Mat. Sci. Semicon. Proc. [Online]. 92 (2019, Mar.) 19–27. Available: https://www.sciencedirect.com/science/article/abs/pii/S1369800118301896
[6] I. S. Han, J. S. Kim, J. Ch. Shin, J. O. Kim, S. K. Noh, S. J. Lee, S. Krishna. Photoluminescence study of InAs/InGaAs sub-monolayer quantum dot infrared photodetectors with various numbers of multiple stack layers. J. Lumin. [Online]. 207 (2019, Mar.) 512-519. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022231318313048
[7] V. G. Reshma, P. V. Mohanan. Quantum dots: Applications and safety consequences. J. Lumin. [Online]. 205 (2019, Jan.) 287-298. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022231318313334
[8] M. Servatkhah, P. Hashemi, R. Pourmand. Binding energy in tuned quantum dots under an external magnetic field. J. of Optoelectronical Nano Structures. [Online]. 7(4) (2022, Nov.) 49-65. Available: https://jopn.marvdasht.iau.ir/article_5677.html
[9] F. Rahimi, T. Ghaffary, Y. Naimi, H. Khajehazad. Study the energy states and absorption coefficients of quantum dots and quantum anti-dots with hydrogenic impurity under the applied magnetic field. J. of Optoelectronical Nano Structures. [Online]. 7(1) (2022, Jan.) 1-18. Available: https://jopn.marvdasht.iau.ir/article_5091.html
[10] A. Jahanshir. Quanto-Relativistic Background of Strong Electron-Electron Interactions in Quantum Dots under magnetic field. J. of Optoelectronical Nano Structures. [Online]. 6(3) (2021, Aug.) 1-24. Available: https://jopn.marvdasht.iau.ir/article_4972.html
[11] M. ZekavatFetrat, M. Sabaeian, Gh. Solookinejad. The effect of ambient temperature on the linear and nonlinear optical properties of truncated pyramidal-shaped InAs/GaAs quantum dot. J. of Optoelectronical Nano Structures. [Online]. 6(3) (2021, Aug.) 81-92. Available: https://jopn.marvdasht.iau.ir/article_4980.html
[12] H. Bahramiyan, S. Bagheri. Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect. J. of Optoelectronical Nano Structures. [Online]. 3(3) (2018, Sep.) 79-100. Available:
[13] D. Leonard, K. Pond, P. M. Petroff. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B [Online]. 50 (1994, Oct.) 11687–11692. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.50.11687
[14] M. Dezhkam, A. Zakery. Electronic properties of hemispherical quantum dot/wetting layer with and without hydrogenic donor impurity. Phys. B [Online]. 443 (2014, Jun.) 70-75. Available: https://www.sciencedirect.com/science/article/abs/pii/S0921452614001859
[15] M. Dezhkam, A. Zakery, A. Keshavarz, Chin. Opt. Lett. 14 (2016) 121904.
[16] Z. Ghafarizadeh Jahromi, M Dezhkam. Temperature and hydrostatic pressure effects on the electronic structure, optical properties of spherical segment quantum dot/wetting layer and group velocity of light. Laser Phys. [online]. 30 (2020) 055402. Available: https://doi.org/10.1088/1555-6611/ab8299
[17] M. Moradi, M. Moradi. The effects of temperature and electric field on the electronic and optical properties of an InAs quantum dot placed at the center of a GaAs nanowire. J. of surface investigation [online]. 16 (2022) 1237-1247. Available: https://link.springer.com/article/10.1134/S1027451022060428
[18] L. Belamkadem, O. Mommadi et al. The intensity and direction of the electric field effects on off-center shallow-donor impurity binding energy in wedge-shaped cylindrical quantum dots. Thin Solid Films [online]. 757 (2022, Sep.) 139396. Available: https://www.sciencedirect.com/science/article/abs/pii/S0040609022003108
[19] V. D. Krevchik, A. V. Razumov et al. Influence of an external electric field and dissipative tunneling on recombination radiation in quantum dots. Sensors [online]. 22(4) (2022) 1300. : https://doi.org/10.3390/s22041300 , https://www.mdpi.com/1424-8220/22/4/1300
[20] K. Li, L. Wei, Y. Hu, H. Yin, Z. Li, Z. Chen. Electric field effect on anisotropic nonlinear optical properties of GaN/AlN quantum dots with multitype-tunable shape. Optics & Laser Technology [online]. 158 (2023, Feb.) 108797. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030399222009434
[21] M. K. Bahar, P. Baser. The second, third harmonic generations and nonlinear optical rectification of the Mathieu quantum dot with the external electric, magnetic and laser field. Phys. B [online]. 665 (2023, Sep.) 415042. Available: https://www.sciencedirect.com/science/article/abs/pii/S092145262300409X
[22] V. Pavlović, L. Stevanović. Group velocity of light in a three level ladder-type spherical quantum dot with hidrogenic impurity. Superlattice. Microst. [Online]. 100 (2016, Dec.) 500-507. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603616308448
[23] B. Behroozian, H. R. Askari, M. R. Rezaie. Light group velocity in quantum dots under electromagnetically induced transparency by using second quantization formalism. Optik [online]. 226 (2021, Jan.) 165907. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030402620317241
[24] S. S. Li, J. B. Xia, Z. L. Yuan, Z. Y. Xu. Effective-mass theory for InAs/GaAs strained coupled quantum dots. Phys. Rev. B [Online]. 54 (1996, Oct.) 11575–11581. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.11575
[25] Y. T. B. Ali, G. Bastard, R. Bennaceur. Ground state transition energies in biased InAs/GaAs quantum dots. Phys. E [Online]. 27 (2005) 67–76. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947704005314
[26] E. H. Li. Material parameters of InGaAsP and InAlGaAs systems for use
in quantum well structures at low and room temperatures. Phys. E [Online]. 5 (2000) 215-273. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947799002623
[27] W. X. Yang, R. K. Lee. Slow optical solitons via intersubband transitions in a semiconductor quantum well. Eur. Phys. Lett. [Online]. 83 (2008, Jul.) 14002. Available: https://iopscience.iop.org/article/10.1209/0295-5075/83/14002/pdf
[28] W. Yan, T. Wang, X. M. Li. Theoretical ultraslow bright and dark optical solitons in cascade-type GaAs/AlGaAs multiple quantum wells. Opt. Commun. [Online]. 285 (2012) 3559–3562. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401812003689
[29] S. Ünlü, İ. Karabulut, H. Şafak. Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Phys. E [Online]. 33(2) (2006, Jul.) 319-324. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947706002669
[30] P. W. Milonni, slow light, in Fast Light, Slow Light and Left-Handed Light, IOP Publishing, Bristol and Philadelphia, 2005, 144-172.
[31] M. Bayer, A. Forchel. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B [Online]. 65(4) (2002, Jan.) 041308(R). Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.65.041308