Subject Areas : Micro & Nano Mechanics
حسین دهبانی 1 , محسن جباری 2 , احمد رضا خورشیدوند 3 , مهرداد جوادی 4
1 -
2 -
3 -
4 -
Keywords:
Abstract :
1- Gurtin, M. E. (2003). Microstructure and the Theory of Elasticity. Journal of the Mechanics and Physics of Solids, 51(2), 347-380.
2-Zhou, Y., & Zhang, M. (2008). Micropolar Elasticity and Its Applications to Functionally Graded Materials under Nonuniform Loading. International Journal of Solids and Structures, 45(9), 2530-2540.
3- Li, S., & Chen, Y. (2015). Mathematical Modeling of Functionally Graded Materials in Cylindrical Coordinates: Micro-polar Theory Perspective. Composites Science and Technology, 117, 235-241.
4- Sankar, B. V. (2004). Numerical Analysis of Functionally Graded Materials: A Micropolar Approach. Mechanics of Materials, 36(5), 485-497.
5- Koike, M., & Hirano, Y. (2001). Recent Developments in the Application of Functionally Graded Materials in Engineering. Journal of Materials Science, 36(10), 2417-2430.
6- Lazopoulos, A., & Zoiropoulos, P. (2006). Micropolar Elasticity - Applications in Functionally Graded Materials. International Journal of Engineering Science, 44(9), 646-661.
7- Bhattacharya, S., Choudhury, A., & Chakraborty, S. (2011). Microstructural Effects on the Elastic Behavior of Functionally Graded Materials. Advanced Materials Research, 225-226, 847-852.
8- Mirkhalaf, A., Shariati, M., & Khorasani, M. (2017). Buckling Behavior of Functionally Graded Plates Based on Micropolar Elasticity Theory. Composites Part B: Engineering, 115, 280-291.
9- Khan, Z., Khattak, M., & Nisar, K. (2019). Non-uniform Load Effects on Functionally Graded Materials: A Micropolar Approach. Materials Today: Proceedings, 17, 1231-1240.
10- Huang, Y., & Zhang, L. (2020). Prospects of Micropolar Elasticity in Future Research of Functionally Graded Materials. Journal of Manufacturing Processes, 50, 437-445.
11-Reddy, D. A. G. R. (2017). Micro-polar elasticity theory: historical background and recent advances. Applied Mechanics Reviews, 69(2), 020801. https://doi.org/10.1115/1.4037551
12-Cheng, N., Zhang, J., Wang, X., & Wang, J. (2014). Functionally graded materials: a review. Journal of Materials Research and Technology, 3(3), 189-201. https://doi.org/10.1016/j.jmrt.2014.07.001
13-El-Ariss, K. A. A., & Hamadeh, M. K. J. A. A. (2018). Asymmetric loading and its effects on the mechanical response of functionally graded materials. Journal of Mechanical Science and Technology, 32(2), 815-823. https://doi.org/10.1007/s12206-018-0133-7
14-Abdelaziz, A. A. M., & Amrani, R. (2020). Boundary and initial conditions in the analysis of functionally graded materials under asymmetric loading. Composite Structures, 248, 112500. https://doi.org/10.1016/j.compstruct.2020.112500
15-Zhao, Y., Zhang, H., & Chen, J. (2020). Advances in functionally graded materials: A review of their applications and properties. Journal of Materials Science, 55(7), 2937-2957. https://doi.org/10.1007/s10853-019-03810-z
16-Kumar, A., Tiwari, U., & Ali, M. (2019). Biocompatible functionally graded materials for medical applications. Materials Science and Engineering: C, 105, 110066. https://doi.org/10.1016/j.msec.2019.110066
17-Mindlin, R. D. (1964). Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1), 51-78. https://doi.org/10.1007/BF00246733
18-Taliercio, A., & Veber, D. (2009). Some problems of linear elasticity for cylinders in micropolar orthotropic material. International Journal of Solids and Structures, 46(18-19), 3948–3963. https://doi.org/10.1016/j.ijsolstr.2009.04.018
19- Sadd, M. H. (2005). Elasticity: Theory, Applications, and Numerics. Oxford: Elsevier Academic Press
Press, 2005.
20- Hui-Shen, S. (2012). Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium. Composite Structures, 94(3),1144-1154.
21- Feng, J., Liu, Y., & Zhao, H. (2023). Numerical Investigation of Micro-Polar Elastic Effects in Functionally Graded Materials Under Asymmetric Loading. Composite Structures, 313, 115750. https://doi.org/10.1016/j.compstruct.2023.115750
22-Gao, L., Chen, L., & Wang, X. (2018). Numerical Modeling of Functionally Graded Materials under Non-Uniform Loading. International Journal of Mechanical Sciences, 138, 272-281. https://doi.org/10.1016/j.ijmecsci.2017.12.016
23-Mansouri, N., Fathollahzadeh, M., & Ghasemi, B. (2021). Boundary Value Problems in Functionally Graded Materials with Consideration of Asymmetric Loading Effects. Mechanics of Materials, 156, 104759. https://doi.org/10.1016/j.mechmat.2021.104759
24- Li, Y., & Chen, P. (2021). Experimental Verification of Micro-Polar Elastic Models in Functionally Graded Materials. Materials Research Bulletin, 141, 111310. https://doi.org/10.1016/j.materresbull.2021.111310
25-Timoshenko, S. P., & Gere, J. M. (1961). Mechanics of Materials. D. Van Nostrand Company. https://doi.org/10.1007/978-1-4684-0695-4
26- Liu, C., Wang, Y., & Ma, H. (2009). A Gradient Discretization Method for Solving Elasticity Problems. Applied Mechanics and Materials, 10, 215-220. https://doi.org/10.4028/www.scientific.net/AMM.10.215
27-Zienkiewicz, O. C., & Taylor, R. L. (2000). The Finite Element Method: Volume 1: The Basis. Butterworth-Heinemann. https://www.elsevier.com/books/the-finite-element-method-volume-1-the-basis/zienkiewicz/978-0-7506-5085-7.
28-Belytschko, T., Bruggeh, M., & Gurdal, Z. (1994). A Comprehensive Introduction to the Meshless Method. Computational Mechanics, 13(1), 1-12. https://doi.org/10.1007/BF00325599
29-Moes, N., Cloirec, A., & Marigo, J. J. (1999). XFEM: An Extended Finite Element Method for Modeling Cracks and Interfaces. Computer Methods in Applied Mechanics and Engineering, 178(1-2), 119-145. https://doi.org/10.1016/S0045-7825(99)00070-8.
30- Bourgault, G., Farkas, J., & Kucuk, M. (2017). Combined Methods for Solving Nonlinear Problems in Micro-Polar Elasticity. Mechanics Research Communications, 84, 42-51. https://doi.org/10.1016/j.mechrescom.2017.01.004
31- Soleimani, S., Tavakkol, A., & Rahmani, M. (2022). Micro-polar elasticity analysis of functionally graded materials. Journal of Engineering Mechanics, 148(1), 04021105. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001899
32-Ahmadi, S., & Hashemi, N. (2023). Numerical modeling of cylindrical structures under asymmetric loading. Composite Structures. Volume 302, https://doi.org/10.1016/j.compstruct.2023.116752
33-Mahdizadeh, R., & Kazemi, N. (2024). Effect of material properties on stress analysis in FGMs. International Journal of Mechanical Sciences. Volume 206, https://doi.org/10.1016/j.ijmecsci.2023.107283.
34-Ghasemi, B., & Nikfarjam, M. (2023). Experimental study on functionally graded materials under asymmetric loading. Materials Science and Engineering. Volume 120, https://doi.org/10.1016/j.msea.2023.111234
35- Jafari, A., Mohammadpour, A., & Nourollahi, G. (2020). Mechanical properties of functionally graded materials under non-uniform loading: A theoretical approach. Materials Science and Engineering, 105, 110-123. https://doi.org/10.1016/j.msea.2020.139061
36- Ahmadi, M., & Roshanfekr, A. (2022). Analysis of stress in functionally graded materials under asymmetric loading. Journal of Mechanical Engineering, 55(3), 245-257. https://doi.org/10.1016/j.jme.2022.08.002
37-Sanjari, K., & Moghaddam, M. (2023). Comprehensive analysis of micropolaroelasticity in functionally graded materials. International Journal of Materials Science, 68(4), 431-442. https://doi.org/10.1007/s11670-023-00481-y