Tracking Dust Centers on the Common Border of Iran and Iraq in ten-year period of 2012-2022
Subject Areas : New technologies in natural resources and environmentAliAsghar Mirzaei Nowroozani 1 , Ali Nik ahd 2 , AliEisa Alshoveyli 3
1 - Department of Agriculture, Payam Noor University, P.O. 19395-4697, Tehran, Iran
2 - Department of Remote Sensing and GIS, Faculty of Agriculture and Modern Technologies, Islamic Azad University, Shiraz Branch, Fars, Iran
3 - Senior International Student (RS-GIS Department, Islamic Azad University, Shiraz, Iran)
Keywords: Dust, Landsat images, NDVI vegetation index.,
Abstract :
Introduction: Particulate matter enters the atmosphere mainly from arid and semi-arid regions where annual precipitation is very low and a large amount of alluvial sediments have accumulated over long periods of time. In fact, deserts and dried up lakes that have turned into small deserts due to climate change can be considered dust production centers. Iraq is one of the countries that is often affected by dust storms. The purpose of this research is to track, zone and identify dust centers in the border provinces of Iraq and Iran in a ten-year period. Materials and Methods: In order to carry out this research, a 60 km wide area along the Iran-Iraq common border was selected from Maysan and Wasit provinces located in Iraq (about 300 km along the common border). After performing pre-processing on the images (atmospheric and radiometric corrections) using the relevant algorithms, high errors and then using the normalized vegetation index (NDVI) to classify the earth surface phenomena, separately based on the threshold values of these Indexes were categorized. Results and Discussion: Spatial distribution includes three classes a) water areas which are related to areas covered with water, rivers, marshes and wetlands b) bare soil which includes areas without vegetation such as stony areas, uncultivated agricultural lands Sand fields and sand fields and c) Vegetation which includes areas covered with forests, pastures and agricultural lands were categorized and finally the areas prone to dust generation were determined and their area was determined Conclusion: Be made In general, the results of this study with other similar studies in the countries of Iran, Iraq and Saudi Arabia show the effects of drought and the expansion of desert lands and the drying of wetlands, marshes and rivers and the loss of vegetation and the bareness of the land without any cover. It is pasture, forest and agriculture. Due to the large area of deserts, they can be considered the center of growth and zoning of dust storms, and to deal with dust storms, methods such as moistening the soil, biological and mechanical methods such as mulching are performed.
1. Cao H. Amiraslani F. Liu J. Zhou N. Identification of dust storm source areas in West Asia using multiple environmental datasets. Sci Total Environ. 2015; 502: 224-235. Doi.org/10.1016/j.scitotenv.2014.09.025.
2. Indoitu R. Orlovsky L. Orlovsky N. Dust storms in Central Asia: spatial and tempora variations. J Arid Environ. 2012; 85: 62-70. https://Doi.org/10.1016/j.jaridenv.2012.03.018.
3. Furman H.K.H. Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor Built Environ. 2003; 12(6): 419-426. https://Doi.org/10.1177/1420326X03037110.
4. Reyadh A. Venkataraman L. Monitoring Dust Storms in Iraq Using Satellite Data. Dep .Eng Sys Environ. 2019; 19(17): 3687. Doi: 10.3390/s19173687.
5. Cao H. Fu C. Zhang W. Liu J. Characterizing Sand and Dust Storms (SDS) Intensity in China Based on Meteorological Data. Sustainability. 2018; 10(7): 2372. https://Doi.org/10.3390/su1007237.
6. Al-Hemoud A. Al-Dousari A. Misak R. Al-Sudairawi M. Naseeb A. Al-Dashti H. Al-Dousari N. Economic Impact and Risk Assessment of Sand and Dust Storms (SDS) on the Oil and Gas Industry in Kuwait. Sustainability. 2019; 11(1):1-19. https://Doi.org/10.3390/su11010200.
7. Fallah Zozli M. A. Vafainejad M. Khairkhah Z. F. Ahmadi D. Finding the origin of dust in southern Iran and its synoptic analysis using remote sensing and geographic information system. RS GIS Natur Res. 2013; 5(4): 61-78. http://girs.iaubushehr.ac.ir. ]IN Persian[.
8. Faridi S. Rahmani S. Hashemi N. Qobadian S. Zokaei M. Economic effects of dust storms. J health. 2019; 11(5): 699-713. Doi. 10.52547/j.health.11.5.699. ]IN Persian[.
9. Khojasteh N. Morad E. Comparison of interpolation methods for wind erosion mapping using the USEPA model. Soil. Water. Sci. Agric. Sci and Tech and Nat Resour. 2021; 24(4): 93-110. Doi. 10.47176/jwss.24.4.2251. ]IN Persian[.
10. Baaghideh M. Ahmadi H. Analysis of dust risk and its changes in the west and southwest of Iran. Sci Res Q Emdad and Vanjat. 2014; 6(2): 0-0. http://jorar.ir/article-1-183-fa.html]IN Persian[.
11. Khoshakhlagh F. Mohammad S. Zamanzadeh S. Shirazi M. Samadi M. Investigating the compositions of dust load in the west and southwest of Iran. J Geo environ hazards Geo Environ Hazards . 2012; 6(2): 17-36. DOi: 10.22067/GEO.V0I0.20117. ]IN Persian.[
12. Zolfaghari H. Abedzadeh H. Analysis of the origin of dust in Bushehr and Khuzestan using satellite images. Forest. Q. 2018; 78: 48-51. magiran.com/p514858. ]IN Persian[.
13. Azizi GH. Miri M. Nabavi S. Tracking the phenomenon of dust in the western half of Iran. Geo Stud dry areas. 2013; 7: 103-118. Magiran.com/p1093845.]IN Persian[.
14. Zarasondi A. Miahi G. Eskandari H. Evaluation of the effect of land cover change on the soil erosion process of Horul Azim wetland in the southwest of Iran. J Nat Environ Hazards. 2019; 10(27): 107-122. Doi: 10.22111/JNEH.2020.33269.1626. ]IN Persian[.
15. Ekhtesasi M.Zare A. Geopedological origin of dust storms in Iran and Iraq. International Specialized Congress of Science and Earth. International Specialized Congress of Science and Earth. Year: 2014 | Holding period: 34. SID. https://sid.ir/paper/840921/fa. ]IN Persian[.
16. Jahani Shakib F. Malek Mohammadi B.Yavari A. Sharifi A. Adeli Y. Evaluation of the trend of land use changes and climate change in the terrain of Chaghakhor Wetland with an emphasis on environmental effects. Environ Sci. 2014; 40(3): 631-643. Doi: 10.22059/JES.2014.52210. ]IN Persian[.
17. Nowroozi A. Shoaei Z. Dust production centers in the western and southern half of Iran: satellite data and field information. J Agric Sci Technol. 2019; 2(2): 29-35. Doi: 10.22092/AISTJ.2020.342192.1040. ]IN Persian[.
18. Namdari S. Hajibaglo A. Abazari GH. Analysis of changes in Iran's internal dust centers in the last twenty years. J geogr Plan. 2022; 25(78): 345-361. Doi: 10.22034/GP.2021.42751.2739.]IN Persian[.
19. Baghbanan P. Ghavidel Y. Farajzadeh M. Temporal long-term variations in the occurrence of dust storm days in Iran. Meteorol Atmos Phys. 2020; 132: 885–898. https://Doi.org/10.1007/s00703- 020-00728-3. ]IN Persian[.
20. Rayegani B. Barati S. Khoshnava A. Dust and Sand Source Identification Using Remotely Sensed Data: a comprehensive Approach. Sci Total Environ. 2019; 72(1): 83-105.dhttps://Doi.org/10.22059/jrwm.2019.251015.1223. ]IN Persian[.
21. Ahrari A. Atmospheric correction of satellite images. 2019; https://girs.ir/remote-sensing-atmospheric-