Optimal Trajectory Planning of a Box Transporter Mobile Robot
Subject Areas : Embedded SystemsHossein Barghi Jond 1 , Adel Akbarimajd 2 , Nurhan Gürsel Özmen 3 , Sonia Gharibzadeh 4
1 - Ahar Branch, Islamic Azad University, Ahar, Iran
2 - Faculty of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
3 - Department of Mechanical Engineering, Karadeniz Technical University, Trabzon, Turkey.
4 - Ahar Branch, Islamic Azad University, Ahar, Iran
Keywords:
Abstract :
[1] Lynch, K. M. and Mason, M. T., 1999. Dynamic Nonprehensile Manipulation: Controllability, Planning, and Experiments. International Journal of Robotics Research, 18 (1), pp. 64-92.
[2] Lynch, K. M., Northrop, M. and Pan, P., 2002. Stable limit sets in a dynamic parts feeder. IEEE Trans Robotics and Automation, 18 (4), pp. 608-615.
[3] Lynch, K. M. and Murphey, T. D., 2003. Control of nonprehensile manipulation. Control Problems in Robotics-Springer Tracts in Advanced Robotics, 4, pp. 39-57.
[4] Li, Q. and Payande, S., 2004. Planning Velocities of Free Sliding Objects as a Free Boundary Value Problem. International Journal of Robotics Research, 23 (1), pp. 69-87.
[5] Mason, M. T., Pai, D., Rus D., Taylor, R. L. et. al., 1999. A Mobile Manipulator. Proc. IEEE International Conf. on Robotics and Automation, Detroit, Michigan, pp. 2322 – 2327.
[6] Yamashita, A., Kawano, K., Ota, J., Arai, T. et. al., 1999. Planning method for cooperative manipulation by multiple mobile robots using tools with motion errors. Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, Kyongju, pp. 978 – 983.
[7] Huang, W. H. and Holden G. F., 2001. Nonprehensile Palmar Manipulation with a Mobile Robot. Proc. IEEE/RSJ International Conf. on .Intelligent Robots and Systems, Maui, HI, USA.
[8] Gupta, A. and Huang, W. H., 2003. A carrying task for nonprehensile mobile manipulators. Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, Las Vegas, USA.
[9] Liu, Y. and Liu, G., 2009. Mobile manipulation using tracks of a tracked mobile robot. Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, St. Louis, MO.
[10] Kolhe, P., Dantam, N., Stilman, M., 2010. Dynamic Pushing Strategies for Dynamically Stable Mobile Manipulators. Proc. IEEE International Conf. on Robotics and Automation, Alaska, USA.
[11] Lepetic, M., Klancar, G. Skrjanc, I., Matko, D. et. al., 2003. Time optimal path planning considering acceleration limits. Robotics and Autonomous Systems, 45, pp. 199–210.
[12] Naguyen, K. D., Chen, I. M., Ng, T. C., 2007. Planning algorithms for s-curve trajectories. Proc. IEEE/ASME International conf. on Advanced Intelligent Mechatronics, Zurich.
[13] Kardos, E. S. and Kiss, B., 2009. Continuous-curvature paths for mobile robots. Periodica polytechnic Electrical Engineering, 53 (1-2), pp. 63-72.
[14] Korayem, M. H., Nazemizadeh, M., Rahimi, H. N., 2013. Trajectory optimization of nonholonomic mobile manipulators departing to a moving target amidst moving obstacles. Acta Mechanica, 224 (5), pp. 995-1008.
[15] Li, B. and Shao, Z., 2015. Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots. Advances in Engineering Software, 87, pp. 30–42.
[16] Sabelhaus, D., Lammers, P. S., Helligen, L. P., Röben, M. F., 2015. Path planning of headland turn manoeuvres. LANDTECHNIK ,70(4), pp. 123–131.
[17] Katrakazas, C., Quddus, M., Chen, W., Deka, L., 2015. Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60, pp. 416-442.
[18] Yang, G. J., Delgado, R., Choi, B. W., 2016. A Practical Joint-space Trajectory Generation Method Based on Convolution in Real-time Control. International Journal of Advanced Robotic Systems, International Journal of Advanced Robotic Systems, 13(56), pp. 1-12.
[19] Yang, K., Jung, D., Sukkarieh, S., 2013. Continuous curvature path-smoothing algorithm using cubic Bezier spiral curves for non-holonomic robots. Advanced Robotics, 27(4): pp. 247-258.
[20] Jolly, K. G., Sreerama-Kumar, R., Vijayakumar, R., 2009. A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits. Robotics and Automation Systems, 57(1), pp. 23-33.
[21] Yang, G. J. and Choi, B. W., 2013. Smooth trajectory planning along Bezier curve for mobile robots with velocity constraints. International Journal of Control and Automation, 6(2), pp. 225-234.
[22] Barghijand, H., Akbarimajd, A., Keighobadi, J., 2011. Quasi-Static Object Manipulation by Mobile Robot: Optimal Motion Planning Using GA. International Conference on Intelligent Systems Design and Applications, Spain, pp. 202-207.
[23] Siciliano, B. and Khatib, O. (Eds.), 2008. Springer Handbook of Robotics, Springer, Springer-Verlag Berlin Heidelberg, Chaps. 5, 27.
[24] Sardain, P. and Bessonnet, G., 2004. Forces Acting on a Biped Robot. Center of Pressure—Zero Moment Point. IEEE Transactions on Systems, Man, and Cybernetics, 34 (5), pp. 630-637.
[25] Jond, H. B., Akbarimajd, A. and Ozmen, N. G., 2014. Time-Distance Optimal Trajectory Planning For Mobile Robots On Straight And Circular Paths. Journal of Advances in Computer Research, 5 (2), pp. 23-36.
[26] Gray, A., 1997. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press.
[27] Melanie, M., 1996. An Introduction to Genetic Algorithms, Fifth printing, Cambridge, MA: MIT Press., Chap. 2.
[28] Haupt, R. L. and Haupt, S. E., 2004. Practical Genetic Algorithms. 2nd ed. New York, USA, Wiley.