Statistical Analysis on IoT Research Trends: A Survey
Subject Areas : Computer Networks and Distributed SystemsAlireza Hedayati 1 , Mehrin Rouhifar 2 , Sahar Bahramzadeh 3 , Vaheh Aghazarian 4 , Mostafa Chahardoli 5
1 - Faculty member of IAUCTB
2 - Computer Engineering Department, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Computer Engineering Department, Central Tehran Branch, Islamic Azad University, Tehran, Iran
4 - Computer Engineering Department, Central Tehran Branch, Islamic Azad University, Tehran, Iran
5 - Computer Engineering Department, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] Airehrour, D., Gutierrez, J. and Ray, S.K., 2016. Secure routing for internet of things: A survey. Journal of Network and Computer Applications, 66, pp. 198-213.
[2] Rajandekar, A. and Sikdar, B., 2015. A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet of Things Journal, 2(2), pp. 175-186.
[3] Perera, C., Liu, C.H. and Jayawardena, S., 2015. The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey. IEEE Transactions on Emerging Topics in Computing, 3(4), pp. 585-598.
[4] Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J. and Leung, K., 2013. A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities, IEEE Wireless Communications, 20(6), pp. 91-98.
[5] Di Marco, P., Athanasiou, G., Mekikis, P.-V. and Fischione, C., 2016. MAC-aware routing metrics for the internet of things. Computer Communications, 74, pp. 77-86.
[6] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and Ayyash, M., 2015. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, 17(4), pp. 2347-2376.
[7] Bandyopadhyay, S., Sengupta, M., Maiti, S. and Dutta, S., 2011. Role of middleware for internet of things: A study, International Journal of Computer Science and Engineering Survey (IJCSES), 2(3), pp. 94-105.
[8] Fasolo, E., Rossi, M., Widmer, J. and Zorzi, M., 2007. In-network aggregation techniques for wireless sensor networks: a survey. IEEE wireless communication, 14(2), pp. 70-87.
[9] Jin, Y., Gormus, S., Kulkarni, P. and Sooriyabandara, M., 2016. Content centric routing in IoT networks and its integration in RPL. Computer Communications, 89-90, pp. 87-104.
[10] Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V.C.M. and Guan, Y.L., 2015. Wireless Energy Harvesting for the Internet of Things. IEEE Communications Magazine, 53(6), pp. 102-108.
[11] Yan, Z., Zhang, P. and Vasilakos, A.V., 2014. A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, pp. 120-134.
[12] Anzelmo, E., Bassi, A., Caprio, D. and et al., 2011, October. Discussion Paper on the Internet of Things. In 1st Berlin Symposium on Internet and Society: Exploring the Digital Future.
[13] Atzori, L., Iera, A. and Morabito, G., 2010. The Internet of Things: A survey. Computer Networks, 54(15), pp. 2787-2805.
[14] Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M., 2013. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), pp. 1645-1660.
[15] Razzaque, M.A., Milojevic-Jevric, M., Palade, A. and Clarke, S., 2016. Middleware for Internet of Things: A Survey. IEEE Internet of Things Journal, 3(1), pp. 70-95.
[16] Domingo, M.C., 2012. An overview of the Internet of Things for people with disabilities. Journal of Network and Computer Applications, 35( 2), pp. 584-596.
[17] Jia, X., Feng, Q., Fan, T. and Lei, Q., 2012, May. RFID technology and its applications in Internet of Things (IoT). In Consumer Electronics, Communications and Networks, 2012, (CECNet). 2nd International Conference on (pp. 1282-1285). IEEE.
[18] Liu, C.H., Yang, B. and Liu, T., 2014. Efficient naming, addressing and profile services in Internet-of-Things sensory environments. Ad Hoc Networks, 18, pp. 85-101.
[19] Holler, J., Tsiatsis, V., Mulligan, C. and et al., 2014. From Machine-to-Machine to the Internet of Things : Introduction to a new Age of Intelligence. AP Publisher: Academic Press is an imprint of Elsevier.
[20] Distefano, S., Merlino, G. and Puliafito, A., 2015. A utility paradigm for IoT: The sensing Cloud. Pervasive and Mobile Computing, 20, pp. 127-144.
[21] Li, S., Xu, L.D. and Zhao, S., 2015. The internet of things: a survey. Information Systems Frontiers, 17( 2), pp. 243-259.
[22] Buyya, R. and Dastjerdi, A.V., 2016. Internet of Things, Principles and Paradigm. 1st Edition, Elsevier Press.
[23] Jianguo, X., Gang, X. and Mengmeng, Y., 2013, June. Monitoring system design and implementation based on the Internet of Things. In Digital Manufacturing and Automation (ICDMA). 2013. Fourth International Conference on (pp.801-804). IEEE.
[24] Kanagasundaram, R., Majumdar, S., Zaman, M., Srivastava, P. and Goel, N., 2012, July. Exposing resources as Web services: a performance oriented approach. In symposium of performance evaluation of computer and telecommunication systems (SPECTS), 2012. International symposium on. IEEE.
[25] Rong, Y., Li, B. and HU, Y., 2016. An Experimental Study for Intelligent Logistics: A Middleware Approach. Chinese Journal of Electronics, 25(3), pp. 561-569.
[26] Antoni, A., Marjanovi, M., Pripuzic, K. and Zarko, I.P., 2016. A mobile crowd sensing ecosystem enabled by CUPUS-Cloud-based publish-subscribe middleware for the Internet of Things. Future Generation Computer Systems, 56, pp. 607-622.
[27] Balakrishnan, S.M. and Sangaiah, A.K., 2017. MIFIM-Middleware solution for service centric anomaly in future internet models. Future Generation Computer Systems, 74, pp. 349-365.
[28] Jiang, H., Zhao, S., Zhang, Y. and Chen, Y., 2012. The cooperative effect between technology standardization and industrial technology innovation based on Newtonian mechanics. Information Technology and Management, 13(4), pp. 251-262.
[29] Teklemariam, G.K., Hoebeke, J., Moerman, I. and Demeester, P., 2013. Facilitating the creation of IoT applications through conditional observations in CoAP. EURASIP Journal on Wireless Communications and Networking.
[30] Castellani, A.P., Bui, N., Casari, P. and et al., 2010. Architecture and protocols for the internet of things: a case study. In pervasive computing and communications workshops (PERCOM workshops). Eighth international conference on (pp. 678-683), IEEE.
[31] Lee, I-G. and Kim, M., 2016. Interference-aware self-optimizing Wi-Fi for high efficiency internet of things in dense networks. Computer Communications, 89-90, pp. 60-74.
[32] Collotta, M. and Pau, G., 2015. Bluetooth for Internet of Things: A fuzzy approach to improve power management in smart homes. Computers and Electrical Engineering, 44, pp. 137-152.
[33] Buratti, C., Stajkic, A., Gardasevic, G. & et al. (2015). Testing Protocols for the Internet of Things on the EuWIn Platform. IEEE Internet of Things Journal.
[34] Akgün, M. and Çaglayan, M.U., 2015. Providing destructive privacy and scalability in RFID systems using PUFs. Ad Hoc Networks, 32, pp. 32-42.
[35] He, D., Kumar, N. and Lee, J-H., 2015. Secure pseudonym-based near field communication protocol for the consumer internet of things. IEEE Transactions on Consumer Electronics, 61(1), pp. 56-62.
[36] Ghaleb, S.M., Subramaniam, S. , Zukarnain, Z.A. and Muhammed, A., 2016. Mobility management for IoT: a survey. EURASIP Journal on Wireless Communications and Networking.
[37] Sheng, Z., Wang, H., Yin, C., Hu, X., Yang, S. and Leung, V.C.M., 2015. Lightweight Management of Resource-Constrained Sensor Devices in Internet of Things. IEEE Internet of Things Journal, 2(5), pp. 402-411.
[38] Betzler, A., Gomez, C., Demirkol, I. and Paradells, J., 2015. CoCoA+: An advanced congestion control mechanism for CoAP. Ad Hoc Networks, 33, pp. 126-139.
[39] Rimal, B.P., Choi, E. and Lumb, I., 2009, August. A taxonomy and survey of cloud computing systems. In INC, IMS and IDC, 2009. NCM'09. Fifth International Joint Conference on (pp. 44-51). IEEE.
[40] Mehmood, Y., Görg, C., Muehleisen, M. and Timm-Giel, A., 2015. Mobile M2M communication architectures, upcoming challenges, applications, and future directions. EURASIP Journal on Wireless Communications and Networking.
[41] Kovatsch, M., Lanter, M. and Shelby, Z., 2014. Californium: scalable cloud services for the internet of things with CoAP. In the Internet of Things (IoT 2014). fourth international conference on.
[42] Amadeo, M., Briante, O., Campolo, C., Molinaro, A. and Ruggeri, G., 2016. Information-centric networking for M2M communications: Design and deployment. Computer Communications, 89-90, pp. 105 –116.
[43] Aijaz, A. and Aghvami, H., 2015. Cognitive Machine-to-Machine Communications for Internet-of-Things: A Protocol Stack Perspective. IEEE Internet of Things Journal, 2(2), pp. 103-112.
[44] Bouaziz, M., and Rachedi, A., 2015. A survey on mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology. Computer Communications, 74, pp. 3-15.
[45] Misic, J., Shafi, S. and Misic, V.B., 2006. Performance limitations of the MAC layer in 802.15.4 low rate WPAN. Computer Communications, 29(13-14), pp. 2534–2541.
[46] Park, P., Marco, P.D., Fischione, C. and Johansson, K.H., 2013. Modeling and Optimization of the IEEE 802.15.4 Protocol for Reliable and Timely Communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), pp. 550-564.
[47] Ergen, S.C., Marco, P.D. and Fischione, C., 2009, December. MAC Protocol engine for sensor networks. In Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE.
[48] Hakak, S., Latif, S.A., Gilkar, G. and Alam, M.K., 2014, May. Performance analysis of DYMO and DSR protocols under variation of DSSS rate. In Informatics, Electronics & Vision (ICIEV), 2014. 3rd International Conference on. IEEE.
[49] Karlsson, J., Dooley, L.S. and Pulkkis, G., 2012. Routing security in mobile ad-hoc networks. Issues in Informing Science and Information Technology, 9, pp. 369-383.
[50] Qiu, T., Lv, Y., Xia, F. and et al., 2016. ERGID: An efficient routing protocol for emergency response Internet of Things. Journal of Network and Computer Applications, 72, pp. 104-112.
[51] Sicari, S., Rizzardi, A., Grieco, L.A., and Coen-Porisini, A., 2015. Security, privacy and trust in Internet of Things: The road ahead. Computer Network, 76, pp. 146-164.
[52] Turkanovic, M., Brumen, B. and Hölbl, M., 2014. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion. Ad Hoc Networks, 20, pp. 96-112.
[53] Farash, M.S., Turkanović, M., Kumari, S. and Hölbl, M., 2015. An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment. Ad Hoc Networks, 36, pp. 152-176.
[54] Amin, R., Islam, SK. H., Biswas, G.P. and et al., 2016. Design of anonymity preserving three-factor authenticated key exchange protocol for wireless sensor network. Computer Networks, 101, pp. 42-62.
[55] Li, J., Wen, M. and Zhang, T., 2016. Group-based authentication and key agreement with dynamic policy updating for MTC in LTE-A Networks. IEEE Internet of Things Journal, 3(3), pp. 408-417.
[56] Li, F., Han, Y. and Jin, C., 2016. Practical access control for sensor networks in the context of the Internet of Things. Computer Communications, 89-90, pp. 154-164.
[57] Lee, J., Seo, J.W., Ko, H. and Kim, H., 2017. TARD: Temporary Access Rights Delegation for guest network devices. Journal of Computer and System Sciences, 86, pp. 59-69.
[58] Rizzardi, A., Sicari, S., Miorandi, D. and Coen-Porisini, A., 2016. AUPS: An Open Source AUthenticated Publish/Subscribe system for the Internet of Things. Information Systems, 62, pp. 29-41.
[59] Chatzigiannakis, I., Vitaletti, A. and Pyrgelis, A., 2016. A privacy-preserving smart parking system using an IoT elliptic curve based security platform. Computer Communications, 89-90, pp.165-177.
[60] Avoine, G., Bingol, M., Carpent, X. and Yalcin, S., 2013. Privacy-friendly authentication in RFID systems: on sublinear protocols based on symmetric-key cryptography. IEEE Transactions on Mobile Computing, 12(10), pp. 2037–2049.
[61] Jacobsson, A., Boldt, M. and Carlsson, B., 2016. A risk analysis of a smart home automation system. Future Generation Computer Systems, 56, pp. 719-733.
[62] Liu, A., Zhang, Q., Li, Z. and et al., 2017. A green and reliable communication modeling for industrial internet of things. Computers and Electrical Engineering, 58, pp. 364-381.
[63] Ahmad, M. and Jose, S., 2015, May. Designing for the Internet of Things: A Paradigm Shift in Reliability. In Electronic Components and Technology Conference (ECTC), 2015. 65th International Conference on (pp. 1758-1766). IEEE.
[64] Park, J.H., 2016. All-terminal reliability analysis of wireless networks of redundant radio modules. IEEE Internet of Things Journal, 3(2), pp. 219-230.
[65] Nessa, A. and Kadoch, M., 2016, Joint Network Channel Fountain Schemes for Machine Type Communications over LTE-Advanced. IEEE Internet of Things Journal, 3(3), pp. 418- 427.
[66] Dimitriou, T., 2016. Key Evolving RFID Systems: Forward/Backward Privacy and Ownership Transfer of RFID tags. Ad Hoc Networks, 37(2), pp. 195–208.
[67] Rawat, P., Singh, K.D., Chaouchi, H. and Bonnin, J.M., 2014. Wireless sensor networks: a survey on recent developments and potential synergies. The Journal of Supercomputing, 68(1), pp. 1-48.
[68] Lee, B. and Kim, S-J., 2015. Energy-efficient sensor device personalization scheme for the internet of things and wireless sensor networks. IEICE Transactions on Communications Journal, E98.B(1), pp. 231-241.
[69] Sheng, Z., Mahapatra, C., Zhu., C. and Leung, V.C.M., 2015. Recent advances in industrial wireless sensor networks toward efficient management in IoT. IEEE Access Journal, 3, pp. 622-637.
[70] Porambage, P., Braeken, A. and Schmitt, C., 2015. Group key establishment for enabling secure multicast communication in wireless sensor networks deployed for IoT applications. IEEE Access Journal, 3, pp. 1503-1511.
[71] Díaz, M., Martín, C. and Rubio, B., 2016. State-of-the-art, challenges, and open issues in the integration of Internet of Things and Cloud Computing. Journal of Network and Computer Applications, 67, pp. 99-117.
[72] Xu, Y. and Hela, S., 2016. Scalable Cloud-Sensor Architecture for the Internet of Things. IEEE Internet of Things Journal, l3(63), pp. 285 - 298.
[73] Chen, C., Bose, R. and Helal, A., 2009. Atlas: An Open Model for Automatic Integration and Teleprogramming of Smart Objects. In Design and Integration Principles for Smart Objects, 2009. DIPSO’09. 3rd International Workshop on.
[74] Luo, S. and Ren, B., 2016. The Monitoring and Managing Application of Cloud Computing Based on Internet of Things. Computer Methods and Programs in Biomedicine, 130(C), pp. 154-161.
[75] Škraba, A., Stojanovic, R., Zupan, A., Koložvari, A. and Kofjač, D., 2015. Speech-controlled cloud-based wheelchair platform for disabled persons. Microprocessors and Microsystems, 39(8), pp. 819-828.
[76] Persson, P. and Angelsmark, O., 2015. Calvin – Merging Cloud and IoT. Procedia Computer Science, 52, pp. 210-217.
[77] Tanenbaum, A.S, 1994. Distributed operating systems, first edition, Pearson.
[78] Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D. and Ohlman, B., 2012. A survey of information-centric networking. IEEE Communications Magazine, 50(7), pp. 26-36.
[79] Baccelli, E., Mehlis, C., Hahm, O. and Schmidt, T.C., 2014. Information Centric Networking in the IoT: Experiments with NDN in the Wild. In Information-Centric Networking, 2014. ACM-ICN '14. 1st Conference on. (pp. 77-86). ACM.
[80] Xylomenos, G., Ververidis, C.N., Siris, V.A., and et al., 2014. A survey of information-centric networking research. IEEE Communications Surveys & Tutorials, 16(2), pp. 1024-1049.
[81] Jin, Y., Kulkarni, P., Gormus, S. and Sooriyabandara, M., 2012, October. Content centric and load balancing aware dynamic data aggregation in multi-hop wireless networks. In Wireless and Mobile Computing, Networking and Communications (WiMob), 2012. 8th International Conference on (pp. 179-186). IEEE.
[82] Kim, H., Benson, T., Akella, A. and Feamster, N., 2011, November. The evolution of network configuration: a tale of two campuses. In Internet measurement conference, 2011. IMC'11. SIGCOMM conference on (pp. 499-514). ACM.
[83] https://www935.ibm.com/services/au/gts/pdf/200249.pdf, last accessed on September 2016.
[84] Xia, W., Wen, Y., Foh, C.H., Niyato, D. and Xie, H., 2015. A Survey on Software-Defined Networking. IEEE Communications Surveys & Tutorials, 17(1), pp. 27-51.
[85]https://www.opennetworking.org/images/stories/downloads/white-papers/wp-sdn-newnorm.pdf. last accessed on September 2016.
[86] Jararweh, Y., Al-Ayyoub, M., Darabseh, A. and Rindos, A., 2015. SDIoT: a software defined based internet of things framework. Journal of Ambient Intelligence and Humanized Computing, 1(4), pp. 453-461.
[87] Hakiri, A., Berthou, P. and Gokhale, A., 2015. Publish/subscribe-enabled software defined networking for efficient and scalable IoT communications. IEEE Communications Magazine, 53(9).
[88] Liu, J., Li, Y. and Chen, M., 2015. Software-defined internet of things for smart urban sensing. IEEE Communications Magazine, 53(9).
[89] Aazam, M. and Huh, E.N., 2014, August. Fog Computing and Smart Gateway Based Communication for Cloud of Things. In Future Internet of Things and Cloud (FiCloud), 2014. International Conference on (pp. 464-470). IEEE.
[90] Sehgal, V.K., Patrick, A., Soni, A. and Rajput, L., 2015. Smart human security framework using internet of things, Cloud and fog computing. Part of the Advances in Intelligent Systems and Computing book series, Springer Publisher.
[91] Zhou, Z., Zhao, D., Xu, X., Du, C. and Sun, H., 2015. Periodic Query Optimization Leveraging Popularity-Based Caching in Wireless Sensor Networks for Industrial IoT Applications. Mobile Networks and Applications Journal, 20(2), pp. 124-136.
[92] Zhai, C., Zou, Z., Chen, Q. and et al., 2016. Delay-Aware and Reliability-Aware Contention-Free MF-TDMA Protocol for automated RFID monitoring in industrial IoT. Journal of Industrial Information Integration, 3, pp. 8-19.
[93] Catarinucci, L., Donno, D.D., Mainetti, L. and et al., 2015. An IoT-Aware Architecture for Smart Healthcare Systems. IEEE Internet of Things Journal, 2(6), pp. 515 - 526.
[94] Suarez, J., Quevedo, J., Vidal, I. and et al., 2016. A secure IoT management architecture based on Information-Centric Networking. Journal of Network and Computer Applications, 63, pp. 190-204.
[95] Quevedo, J., Antunes, M., Corujo, D., Gomes, D. and Aguiar, R.L., 2016. On the application of contextual IoT service discovery in Information Centric Networks. Computer Communications, 89-90, pp.117 –127.
[96] Gu, Z. and Zhao, Q., 2012. A state-of-the-art survey on real-time issues in embedded systems virtualization. Journal of Software Engineering and Applications, 5, pp. 277-290.
[97] Morabito, R., 2017. Virtualization on Internet of Things Edge Devices With Container Technologies: A Performance Evaluation. IEEE Access. 5, pp. 8835 – 8850.
[98] Ali, Z.H., Ali, H.A. and Badawy, M.M., 2017. A New Proposed the Internet of Things (IoT) Virtualization Framework Based on Sensor-as-a-Service Concept. Wireless Personal Communications, 97(1), pp. 1419-1443.
[99] Liu, W., Nishio, T., Shinkuma, R. and Takahashi, T., 2014. Adaptive resource discovery in mobile cloud computing. Computer Communications, 50, pp. 119-129.
[100] Djamaa, B., Yachir, A. and Richardson, M., 2017. Hybrid CoAP-based resource discovery for the Internet of Things. Journal of Ambient Intell Human Comput, 8(3), pp. 357-372.
[101] Nishio, T., Shinkuma, R., Takahashi, T. and Mandayam, N.B., 2013, July. Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud. In Mobile cloud computing & networking, 2013. MobileCloud '13. first international workshop on (pp. 19-26), ACM.
[102] Maia, A.M., Vieira, D., de Castro, M.F. and Ghamri-Doudane, Y., 2016. A fair QoS-aware dynamic LTE scheduler for machine-to-machine communication. Computer Communications, 89-90, pp. 75-86.
[103] Kim, T-Y. and Kim, E-J., 2016. Uplink scheduling of MU-MIMO gateway for massive data acquisition in Internet of things. The Journal of Supercomputing, pp. 1-15.
[104] Narman, H.S., Hossain, M.S., Atiquzzaman, M. and Shen, H., 2017. Scheduling internet of things applications in cloud computing. Annals of Telecommunications, 72(1-2), pp. 79-93.
[105] Abdullah, S. and Yang, K., 2014. An Energy Efficient Message Scheduling Algorithm Considering Node Failure in IoT Environment. Wireless Personal Communications, 79(3), pp. 1815-1835.
[106] Chun, B-G., Ihm, S., Maniatis, P., Niak, M. and Patti, A., 2011, April. Clonecloud: elastic execution between mobile device and cloud. In Computer systems, 2011. EuroSys'11. sixth conference on (pp. 301-314). ACM.
[107] Kosta, S., Aucinas, A., Hui, P., Mortier, R. and Zhang, X., 2012, March. Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In INFOCOM, 2012. (pp. 945-953). IEEE.
[108] Gordon, M.S., Jamshidi, D.A., Mahlke, S. and Mao, Z.M., 2012, October. COMET: code offload by migrating execution transparently. In Operating Systems Design and Implementation, 2012. OSDI'12. 10th USENIX conference on (pp. 93-106), ACM.
[109] Kim, S., 2015. Nested game-based computation offloading scheme for Mobile Cloud IoT systems. EURASIP Journal on Wireless Communications and Networking, pp. 229-239.
[110] Flores, H., Hui, P., Tarkoma, S. and et al., 2015. Mobile Code Offloading: From Concept to Practice and Beyond. IEEE Communications Magazine, 53(3), pp. 80-88.
[111] Park, Y. and Kim, S., 2015. Game-based data offloading scheme forIoT system traffic congestion problems. EURASIP Journal on Wireless Communications and Networking, pp. 192-201.
[112] Li, L., Li. S. and Zhao, S., 2014. QoS-Aware Scheduling of Services-Oriented Internet of Things. IEEE Transactions on Industrial Informatics, 10(2).
[113] Pradilla, J., Palau, C. and Esteve, M., 2015. SOSLite: Lightweight Sensor Observation Service (SOS). IEEE Latin America Transactions, 13(12), pp. 3758-3764.
[114] Yerra, R., Kiran , M.P.R.S. and Pachamuthu, R., 2015. Reliability and delay analysis of slotted anycast multi-hop wireless networks targeting dense traffic iot applications. IEEE Communications Letters Journal, 19(5), pp. 727-730.
[115] Poslad, S., 2015. A Semantic IoT Early Warning System for Natural Environment Crisis Management. IEEE Transactions on Emerging Topics in Computing, 3(2), pp. 246-257.
[116] Fang, S., Xu, L., Zhu, Y. and et al., 2015. An integrated information system for snowmelt flood early-warning based on internet of things. Information Systems Frontiers, 17(2), pp. 321-335.
[117] Mayer, R., Koldehofe, B. and Rothemel, K., 2015. Predictable Low-Latency Event Detection With Parallel Complex Event Processing. IEEE Internet of Things Journal, 2(4), pp. 274-286.
[118] Yang, P., 2015. PRLS-INVES: A General Experimental Investigation Strategy for High Accuracy and Precision in Passive RFID Location Systems. IEEE Internet of Things Journal, 2(2), pp. 159-167.
[119] Vermesan, O. and Friees, P., 2014. Internet of Things - From Research and Innovation to Market Deployment. River Publisher.
[120] Smith, I.G., Vermesan, O., Friees, P. and Furness, A., 2012. The Internet of Things 2012 New Horizons. Halifax Publisher, UK.
[121] Zhou, L., Sheng, Z., Wei, L. and et al., 2016. Green cell planning and deployment for small cell networks in smart cities. Ad Hoc Network, 43, pp. 30-42.
[122] Lolis, L., Bernir, C., Pelissier, M., Dallet, D. and Begueret, J.B., 2010, June. Bandpass Sampling RX System Design Issues and Architecture Comparison for Low Power RF Standards. In Circuits and Systems (ISCAS), 2010. International Symposium on (pp. 3921-3924). IEEE.
[123] Hayashi, Y., Yahagi, K., Sato, H., Sato, K. and Muratani, M., 2015, August. "Easy-to-use" RF-solutions for IoT applications. In Radio-Frequency Integration Technology (RFIT), 2015. International Symposium on (pp. 13-15). IEEE.
[124] Bousseaud, P., Novakov, E. and Fournier, J.M., 2015, October. A direct RF signal sampling integrated receiver for IoT applications. In Advanced Technologies for Communications (ATC), 2015. International Conference on (pp. 237-242). IEEE.
[125] Liu, Y., Ren, K.L., Hofmann, H.F. and Zhang, Q., 2005. Investigation of electrostrictive polymers for energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(12), pp. 2411-2417.
[126] Cengiz, K. and Dag, T., 2015. A review on the recent energy-efficient approaches for the Internet protocol stack. EURASIP Journal on Wireless Communications and Networking, pp. 108-129.
[127] Gorlatova, M., Sarik, J., Grebla, G. and et al., 2015. Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things. IEEE Journal on Selected Areas in Communications, 33(8), pp. 1624-1639.
[128] Wang, Y., Liu, Y., Wang, C. and et al., 2016. Storage-less and Converter-less Photovoltaic Energy Harvesting with Maximum Power Point Tracking for Internet of Things. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(2), pp. 173-186.
[129] Kim, S. and Kim, S., 2016. A multi-criteria approach toward discovering killer IoT application in Korea. Technological Forecasting & Social Change, 102, pp. 143–155.
[130] Islam, S.M.R., Kwak, D., Kabir, M.H., Hossain, M. and Kwak, K-S., 2015. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access, 3, pp. 678-708.
[131] Luo, X., Liua, J., Zhanga, D. and Chang, X., 2016. A large-scale web QoS prediction scheme for the Industrial Internet of Things based on a kernel machine learning algorithm. Computer Networks, 101, pp. 81-89.
[132] Rathore, M.M., Ahmad, A., Paul, A. and Rho, S., 2016. Urban planning and building smart cities based on the Internet of Things using Big Data analytics. Computer Networks, 101, pp. 63-80.
[133] Gigli, M. and Koo, S., 2011. Internet of Things: Services and applications categorization. Advances in Internet of Things (AIT), 1(2), pp. 27–31.
[134] Xiaojiang, X., Jianli, W. and Mingdong, L., 2010. Services and key technologies of the Internet of Things. ZTE Communication, 8(2), pp. 26-29.
[135] Ruckebusch, P., Poorter, E.D., Fortuna, C. and Moerman, I., 2016). GITAR: Generic extension for Internet-of-Things ARchitectures enabling dynamic updates of network and application modules. Ad Hoc Networks, 36(1), pp. 127-151.
[136] Barbon, G., Margolis, M., Palumbo, F., Raimond, F. and Weldin, N., 2016. Taking Arduino to the Internet of Things: The ASIP programming model. Computer Communications, 89-90, pp. 128-140.
[137] Nastic, S., Truong, H-L. and Dustdar, S., 2015. SDG-Pro: a programming framework for software-defined IoT cloud gateways. Journal of Internet Services and Applications, 6, pp. 21-37.
[138] Silva, J.A., Faria, E.R., Barros, R.C. and et al., 2013. Data stream clustering: A survey. ACM Computing Surveys, 46(1).
[139] Qin, Y., Sheng, Q.Z., Falkner, N.J.G. and et al., 2016. When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64, pp. 137-153.
[140] Liu, J., Fang, C. and Ansari, N., 2016. Request Dependency Graph: A Model for Web Usage Mining in Large-scale Web of Things. IEEE Internet of Things Journal, 3(4), pp. 598 - 608.
[141] Poghosyan, G., Pefkianakis, I., Le Guyadec, P. and Christophides, V., 2016. Mining usage patterns in residential intranet of things. Procedia Computer Science, 83, pp. 988-993.
[142] Zhu, T., Dhelim, S., Zhou, Z., Yang, S. and Ning, H., 2017. An architecture for aggregating information from distributed data nodes for industrial internet of things. Computers and Electrical Engineering, 58, pp. 337-349.
[143] Mehdiyev, N., Krumeich, J., Enke, D., Werth, D. and Loos, P., 2015. Determination of Rule Patterns in Complex Event Processing Using Machine Learning Techniques. Procedia Computer Science, 61, pp. 395-401.
[144] Mostefaoui, A., Noura, H. and Fawaz, Z., 2015. An integrated multimedia data reduction and content confidentiality approach for limited networked devices. Ad Hoc Networks, 32, pp. 81-97.
[145] Serdaroglu, K.C. and Baydere, S., 2016. WiSEGATE: Wireless Sensor Network Gateway framework for internet of things. Wireless Networks, 22(5), pp. 1475–1491.
[146] Xu, Q., Aung, K.M.M., Zhu, Y. and Yong, K.L., 2016. Building a large-scale object-based active storage platform for data analytics in the internet of things. The Journal of Supercomputing, 72(7), pp. 2796-2814.
[147] Jiang, H., Shen, F., Chen, S., Li, K-C. and Jeong, Y-S., 2015. A secure and scalable storage system for aggregate data in IoT, Future Generation Computer Systems, 49, pp. 133-141.
[148] Kizza, J.M., 2015. Guide to Computer Network Security. The Computer Communications and Networks book series. London: Springer.
[149] Raza, S., Voigt, T. and Wallgren, L., 2013. SVELTE: Real-time intrusion detection in the Internet of Things. Ad Hoc Networks, 11( 8), pp. 2661-2674.
[150] Costamagna, G., Kasinathan, P., Khaleel, H., Pastrone, C. and Spirito, M.A., 2013, November. DEMO: An IDS framework for internet of things empowered by 6LoWPAN. In Computer & communications security, 2013. CCS'13. SIGSAC conference on (pp. 1337-1340). ACM.
[151] Kubler, S., Främling, K. and Buda, A., 2015. A standardized approach to deal with firewall and mobility policies in the IoT. Pervasive and Mobile Computing, 20, pp. 100-114.
[152] Russell, B. and Duren, D.V., 2016. Practical Internet of Things Security. Packt Publishing.