The Assessment of Role of Orientation, Type of Materials and Facade Construction Details on the Energy Consumption of Residential Buildings in Tehran
Subject Areas : architecture
1 - Assistant Professor, Department of Architecture, Parand Branch, Islamic Azad University, Prand, Iran
Keywords: Tehran city, buildings envelop, Residential buildings, saving energy consumption,
Abstract :
In this research, focusing on the East, West and South regions of Tehran, the cooling and heating load in residential buildings in different geographical directions has been compared, and concerning the building façade material and construction details, optimal choices have been proposed. This study answers these questions, which of the typical façade materials and construction detail in Tehran city have the best performance in reducing the energy consumption of residential buildings, and what is the effect of facade direction on heating and cooling energy consumption of residential buildings. For this purpose, the simulation tool has been utilized using Energy plus software with a design-builder interface for thermal analysis. The results of this study show that the heating load of residential buildings in Tehran is higher than the cooling load in the western and northern units and the cooling load of the building is higher than the heating load in the southern and eastern units. In this regard, the heating load in the west facing units is 8%, and in the north units, it is 15 to 26% more than the cooling load. In south-facing units, the heating load of the building is 11 to 30%, and in east-facing units, the heating load of the building is up to 20% less than the cooling load. Comparison of heating load in southern, northern, eastern and western units shows that the best orientation of the building in Tehran to reduce the heating load of the building are respectively south-facing, east-facing (19 to 22% more than the southern unit), west-facing (20 to 25% more than southern units) and north-facing (30 to 40% more than southern units). The best orientation of the building in Tehran to reduce the cooling load of the building are the units facing south, north (0.5 to 7.5% more than the southern unit), west (6.5 to 7% more than the southern unit) and east (10.5 more than the southern unit) respectively. Regarding total cooling and heating load, the best orientation of the building in Tehran to reduce energy consumption are respectively south and then east facing units (about 16% more than southern units), west (15 to 17% more than southern units) and north (18 to 20% more in different views than southern units). The priorities of selection of facade materials and construction details in southern facades are brick facades with dry connection method, concrete panels with dry connection method and stone facades with dry connection method. In north-facing units, this arrangement includes a brick facade with a dry connection method, concrete panels with a dry connection method and stone facades with a dry connection method. In the west facing units, concrete panels with dry connection method, brick facades with dry connection method, and stone facades with dry connection method are the best. In the east facing units, brick facades with dry connection method, stone facades with dry connection method, ceramic facades with dry connection method and concrete panels with dry connection method have better performance in reducing the energy consumption of the building.
- امیری فرد، رضا؛ ثقفی، محمود رضا؛ و طاهباز، منصوره. (1399). بررسی تأثیر همزمان درصد سطوح شفاف نما و جهتگیری بنا بر میزان مصرف انرژی مدارس در اقلیم معتدل و مرطوب ایران. صفه، 30(4)، 49-65. https://soffeh.sbu.ac.ir/article_100562.html
- ذوالفقاری، سید علیرضا؛ سعادتی نسب، مهران؛ و نوروزی، الهه. (1393). ارزیابی میزان تأثیر نمای خارجی ساختمان بر مصرف انرژی سالانه در اقلیمهای مختلف ایران. انرژی ایران، ۱۷ (۴)، 45-51. http://necjournals.ir/article-1-589-fa.html
- ذوالفقاری، سید علیرضا. (1393). واکاوی الزامات و قیود بهینهسازی مصرف انرژی در ساختمان. انرژیهای تجدید پذیر و نو، 1(1)، 12-23. https://www.magiran.com/paper/1307489
- سازمان برنامهوبودجه ایران. (1395). دستورالعمل طراحی سازهای و الزامات و ضوابط عملکردی و اجرایی نمای خارجی ساختمانها ضابطه شماره 714. تهران: سازمان مجری ساختمانهای دولتی و عمومی معاونت برنامهریزی و مهندسی.
- شریفی، مهدی؛ و قبادیان، وحید. (1396). بررسی تأثیر خصوصیات فیزیکی پوستههای ساختمانها بر زمان تأخیر و ضریب کاهش انتقال حرارت (نمونهی موردی: ساختمانهای بلندمرتبهی شهر همدان). علوم و فنّاوری محیطزیست. 19(4)،167-178. https://jest.srbiau.ac.ir/article_10720.html
- کریم پور، علیرضا؛ دیبا، داراب؛ و اعتصام، ایرج. (1398). تحلیلهای اقتصادی و ارزیابی میزان مصرف انرژی بر اساس نوع و نسبت پنجرهها با استفاده از مدلهای شبیهسازی (موردمطالعه: یک واحد مسکونی نمونه در شهر تهران). هویت شهر. 13(3), 19-34. https://hoviatshahr.srbiau.ac.ir/article_14924.html
- کسمائی، مرتضی. (1391). اقلیم و معماری. تهران: شرکت سرمایهگذاری خانهسازی ایران.
- محمد، شقایق. (1392). مطالعه رفتار حرارتی مصالح رایج در ساخت دیوار (مطالعه موردی: ساختمانهای مسکونی شهر تهران). معماری و شهرسازی (هنرهای زیبا). 18(1), 69-78. https://jfaup.ut.ac.ir/article_36358.html
- مداحی، سید مهدی؛ و توانائی، فهیمه. (1398). بهینهسازی عملکرد حرارتی جدارههای خارجی یک ساختمان مسکونی میان مرتبه در اقلیم سرد و خشک با بهرهگیری از نرمافزار شبیهساز انرژی (نمونۀ موردی: شهر مشهد). مهندسی و مدیریت انرژی. 9(3)، 108-121. https://energy.kashanu.ac.ir/article-1-1086-fa.html
- وزارت نیرو. (1392). ترازنامه انرژی ایران سال 1391. تهران: معاونت امور برق و انرژی. دفتر برنامهریزی کلان برق و انرژی.
- وزارت نیرو. (1399). ترازنامه انرژی ایران سال 1397. تهران: معاونت امور برق و انرژی. دفتر برنامهریزی کلان برق و انرژی.
- Abanda, F.H., & Byers, L. (2016). An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy, 97(c), 517-527. DOI: 10.1016/j.energy.2015.12.135
- Abba, H. Y., Majid, R. A., Ahmed, M. H., & Ayegbusi, O. G. (2022). Validation of Design builder Simulation Accuracy Using Field Measured Data of Indoor Air Temperature in A Classroom Building. Journal of Tourism Hospitality and Environment Management, 7 (27), 171-178. http://www.jthem.com/PDF/JTHEM-2022-27-03-14.pdf
- Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2018). The Significance of the Orientation on the Overall buildings Thermal Performance-Case Study in Australia. Energy Procedia, 152, 377-372. https://doi.org/10.1016/j.egypro.2018.09.159
- Balali, A., & Valipour, A. (2020). Identification and selection of building façade's smart materials according to sustainable development goals. Sustainable Materials and Technologies, 26(4), 213-224. https://doi.org/10.1016/j.susmat.2020.e00213
- N., & Turkmen. H. (2008). Analysis of Annual Heating and Cooling Energy Requirements for Office Buildings in Different Climates in Turkey. Journal of Energy and Building, 40(5), 763-773. https://doi.org/10.1016/j.enbuild.2007.05.008
- Fathalian, A., & Kargarsharifabad, H. (2018). Actual validation of energy simulation and investigation of energy management strategies (Case Study: An office building in Semnan, Iran). Case Studies in Thermal Engineering, 12, 510-516. https://doi.org/10.1016/j.csite.2018.06.007
- Jalali, S., Parapari, D. M., & Mahdavinejad, M. J. (2019). Analysis of Building Facade Materials Usage Pattern in Tehran. Advanced Engineering Forum, 31, 46–62. DOI: 10.4028/www.scientific.net/AEF.31.46
- Jamal Jalal, Sh., & Bani, R. (2017). Orientation modeling of high-rise buildings for optimizing exposure/transfer of insolation, case study of Sulaimani, Iraq. Energy for Sustainable Development, 41, 157-164. DOI:10.1016/j.esd.2017.09.003
- Karimimoshaver, M., & Samadpour Shahrak, M. (2022). The effect of height and orientation of buildings on thermal comfort. Sustainable Cities and Society, 79, 103-117. https://doi.org/10.1016/j.scs.2022.103720
- Lixing, G. (2007). Airflow Network Modeling in EnergyPlus. Conference Proceedings 10th International Building Performance Simulation Association Conference and Exhibition. September 6-3, Beijing: China.
- Lobaccaro, G., Fiorito, F., Masera, G., & Poli, T. (2012). District geometry simulation: a study for the optimization of solar facaded in urban canopy layers. Energy Procedia, 30, 1163-1172. https://doi.org/10.1016/j.egypro.2012.11.129
- Av., & Fiorelli. F. (2008). Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Journal of Energy and Building, 40(12), 2169-2176. https://doi.org/10.1016/j.enbuild.2008.06.013
- Renuka, S.M., Maharani, C.M., Nagasudha,S., & Raveena Priya, R. (2022). Optimization of energy consumption based on orientation and location of the building. Materials Today: Proceedings, 65(2), 527-536. https://doi.org/10.1016/j.matpr.2022.03.081
- Saleem, M., Chhipi-Shrestha, G., Barbosa Andrade, M., Dyck, R., Ruparathna, R, Hewage, K., & Sadiq, R. (2018). Life Cycle Thinking–Based Selection of Building Facades. Journal of Architectural Engineering, 24(4), 1-13. DOI:10.1061/(ASCE)AE.1943-5568.0000333
- Susorova, I., Angulo, M., Bahrami, P., & Stephens, B. (2013). A model of vegetated exterior facades for evaluation of wall thermal performance. Building and Environment, 67, 1-13. DOI:10.1016/j.buildenv.2013.04.027
- Tokbolat, S., Karaca, F., Durdyev, S., & Calay, RK. (2020). Construction professionals’ perspectives on drivers and barriers of sustainable construction. Environ Dev Sustain, 22, 4361–4378. https://doi.org/10.1007/s10668-019-00388-3
- Wonorahardjo, S., Sutjahja, I., Mardiyati, Y., Andoni, H., Amalia Achsani, R., Steven, S., Thomas, D., Tunçbilek, E., Arıcı, M., Rahmah, N., & Tedja, S. (2022). Effect of different building façade systems on thermal comfort and urban heat island phenomenon: An experimental analysis. Building and Environment, 217, 109-113. https://doi.org/10.1016/j.buildenv.2022.109063
_||_