Solving random inverse heat conduction problems using PSO and genetic algorithms
Subject Areas : StatisticsI. Hossein Zade Shahbolaghi 1 , R. Pourgholi 2 , H. Dana Mazraeh 3 , S.H. Tabasi 4
1 - Student, School of Mathematics and Computer Science, Damghan University,
P.O.Box 36715-364, Damghan, Iran.
2 - Associate Professor, School of Mathematics and Computer Science, Damghan University, P.O.Box 36715-364, Damghan, Iran.
Web address:http://faculty.du.ac.ir/pourgholi/
3 - Lecturere, School of Mathematics and Computer Science, Damghan University, P.O.Box 36715-364, Damghan, Iran.
4 - chool of Mathematics and Computer Science, Damghan University, Damghan, Iran.
Keywords: ﮔﺴﺴﺘﻪﺳﺎزی, ﻣﺴﺎﯾﻞ ﻣﻌﮑﻮس, روش ﺗﻔﺎﺿﻼت ﻣﺘﻨﺎﻫﯽ, ﻣﻌﺎدﻟﻪدﯾﻔﺮاﻧﺴﯿﻞﺟﺰﻳﯽ ﺗﺼﺎدﻓﯽ, اﻟﮕﻮرﯾﺘﻢ ژﻧﺘﯿﮏ, اﻟﮕﻮرﯾﺘﻢﺑﻬﯿﻨﻪﺳﺎزی ازدﺣﺎم ذرات,
Abstract :
The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorithm and the genetic algorithm, we solve them. The algorithms presented in this article have advantages over other old methods that have been presented so far. Implementing these algorithms is simpler, have less run time and produce better approximation. The numerical results obtained in this paper also show that the solutions obtained for the examples presented in the numerical results section are highly accurate and have less error. All of the algorithms in this paper to obtain the desired numeric results, have been implemented on the Pentium (R) Dual core E5700 processor at 3.00 GHz.
]1[ عظیمی عزیز، غلامی شهاب و بیاتی حسن، “بررسی انتقال حرارت هدایت غیرفوریهای در شن با استفاده از مدلهای بر پایه حساب کسری”، نشریه مدلسازی در مهندسی، سال پانزدهم، شماره 48، 1396، صفحه 15-22.
]2 [عابدی فرد رامین و سعدالدین سیف الله، “مدل کردن جریان سیال مذاب و انتقال حرارت غیرفوریه ای در جوشکاری سوراخ کلیدی با قوس پلاسما”، نشریه مدلسازی در مهندسی، سال چهاردهم، شماره 44 ، 1395، صفحه 35-47.
]3 [ ارمغانی طاهر، مغربی محمد جواد و نظری محسن، “تأثیرات پارامتر انتقال حرارت سیال/نانوذره و سیال/جسم جامد بر روی انتقال حرارت جابجایی اجباری نانوسیالات در کانال متخلخل: با شرط عدم تعادل حرارتی”، نشریه مدلسازی در مهندسی، سال چهاردهم، شماره 44، 1395، صفحه 11-20.
]4[ گودرزی کوروش و رمضانی سید رضا، “مقایسه روشهای انتقال حرارت معکوس جهت تخمین ضریب انتقال حرارت تماسی”، نشریه مدلسازی در مهندسی، سال دوازدهم، شماره 37، 1393، صفحه 25-38.
]5[ کریمی زاد گوهری فاطمه و شاهسوند اکبر، “مقایسه نتایج حاصل از شبکههای عصبی MLP و RBF در پیشبینی نتایج حاصل از همزمانی پدیدههای انتقال جرم و انتقال حرارت”، نشریه مدلسازی در مهندسی، سال یازدهم، شماره 33، 1392، صفحه 27-43.
[6] Namjoo, M., and A. Mohebbian. ”Finite Difference Methods For Random Partial differential Equa-tions”, 3rd Conference on Financial Mathematics & Applications. 30, 31 January 2013, Semnan University, Semnan, Iran, L17-M610, pp.1-5.
[7] Bullnheimer, B., Hartel R. and Strauss, C. ”A new rank-based version of the ant system: A computational study.” Central European Journal of Operations Research and Economics., No. 7, 1999, pp.25-38.
[8] S. Foadian, R. Pourgholi, S. H. Tabasi, and J. Damirchi, "The inverse solution of the coupled nonlinear reaction-diffusion equations by the Haar wavelets", International Journal of Computer Mathematics, Volume 96, Issues 1, 2019, Pages 105-125.
[9] S. Foadian, R. Pourgholi, and S. H. Tabasi,"Cubic B-spline method for the solution of an inverse parabolic system", Applicable Analysis an International Journal, Volume 97, Issues. 3, 2018, Pages 438-465.
[10] R. Pourgholi, A. Saeedi, ” Applications of cubic B-splines collocation method for solving nonlinear inverse parabolic partial differential equations”, Numerical Methods for Partial Differential Equations, Volume 33, Issues 1, 2017, Pages 88-104.
[11] R. Pourgholi, A. Saeedi, "Solving a nonlinear inverse problem of identifying an unknown source term in a reaction-diffusion equation by Adomian Decomposition method”, TWMS Journal of Applied and Engineering Mathematics, Volume 6, Issues 1, 2016, Pages 150.
[12] Clerc, M. and Kennedy, J. ”The Particle Swarm: Explosion, Stability and Convergencein multi-dimensional complex space.” IEEE Transactions on Evolutionary Computation., Vol.20, No. 6, 2002, pp. 58-73.
[13] Siarry, P., Metaheuristics for Hard Optimizations. Springer-Verlag Berlin Heidelberg ,2006.
[14] Yamian, Peng, Ji Nan, and Zhang Huancheng. ”Improved PSO Research for Solving the Inverse Problem of Parabolic Equation.” International Journal of Database Theory and Application, Vol. 9, No.12, 2016, pp. 173-184.
[15] Colaço, Marcelo J., Helcio RB Orlande, and George S. Dulikravich. ”Inverse and optimization problems in heat transfer.” Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28, No.1, 2006, pp. 1-24.
[16] Mu, Ai-Qin, De-Xin Cao, and Xiao-Hua Wang. ”A modified particle swarm optimization algorithm.” Natural Science Vol.1, No.2, 2009, pp. 151-155.
[17] Olariu, S. and Zomaya, A.Y., Handbook of Bioinspired Algorithms and Applications, Taylor FrancisGroup, LLC Press, 2006.
[18] Qing, A. ”Electromagnetic Inverse Scattering of Multiple Two-Dimensional Perfectly Con-ducting Objects by the Differential Evolution Strategy.” IEEE Transactions on Antennas and Prop-agation., Vol. 51, No. 6, pp. 1251-1262, 2003.
[19] Hoorfar, A. ”Evolutionary Programming in Electromagnetic Optimization”, IEEE Transac- tions on Antennas and Propagation, Vol. 55, No. 3, pp. 523-537, March 2007.
[20] Glover F. and Kochenberger, G. A. Hanbook of Metaheuristics. Kluwer Academic Publishers, 2003.
[21] J.H. Holland, Adaptation in Natural and Artificial System, University of Michigan Press, Ann Arbor, 1975.
[22] W. Qian, M. Li, “Convergence analysis of standard particle swarm optimization algorithm and its improvement”, Soft Computing, June 2018, Volume 22, Issue 12, pp 4047–4070.
[23] Pourgholi, Reza, Hassan Dana, and Seyed Hashem Tabasi. ”Solving an inverse heat conduction prob-lem using genetic algorithm: Sequential and multi-core parallelization approach.” Applied Mathe-matical Modelling, Vol. 38, No.7, 2014, pp.1948-1958.
[24] F.-B. Liu, A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source, Int. J. Heat Mass Transfer, Vol. 51, 2008, pp. 3745-3752.
[25] Mateescu, George Daniel. ”On the application of genetic algorithms to differential equations.” Ro-manian Journal of Economic Forecasting Vol. 7, No. 2, 2006, pp.5-9.
[26] B. M. Kim, Y. B. Kim, C. H. Oh, “A study on the convergence of genetic algorithm”, Computers & Industrial Engineering, Volume 33, Issues 3–4, December 1997, Pages 581-588.