Solution of Backup Multifacility Location Problem by Considering the Ideal Radius for each Customer
Subject Areas : Statisticsjafar fathali 1 , morteza nazari 2
1 - Faculty of Mathematical Science,Shahrood University of Technology,University Blvd.,Shahrood,Iran
2 - faculty of mathematical science,shahrood university of technology- shahrood- iran
Keywords: شعاع آرمانی, پشتیبان, روش وایز فیلد, مکانیابی پیوسته, چند وسیلهای,
Abstract :
In this paper we introduce a new facility location model, called backup multifacility location problem by considering the ideal radius for each customer. In this problem the location of clients are given in the plane. A radius is assigned to each client. We should find the location of new facilities, which some of them may fail with a given probability, such that the sum of weighted distances from new facilities to the radius distance of clients and sum of weighted distances between new facilities is minimized. Since in the most instance there dose not exist the location of a new facility such that its distance to each Customers be exactly equal to given radiuses, so we try to minimize the sum of the weighted square errors. We model the problem and propose an iterative method (weiszfeld like algorithm) for solving the presented problem. Then a discussion about convergence of presented method and some numerical examples are given. We show that the optimal solution lies in an extended rectangular hull of the existing points.
]1[ نظری، م.، و فتحعلی ج.، مسئله معکوس نوع محدودیت بودجهای 2-میانه پشتیبان با تغییر در مختصات نقاط، مجله تحقیق در عملیات و کاربردهای آن، ۱۵ (2)، 63-88 (1397)
[2] Weiszfeld, E., Sur le point par lequel la somme des distances de n points donns est minimum, Tohoku Math, 43, 355–386 (1937)
[3] Miehle, W., Link-length minimization in networks, Oper. Res., 6, 232–243 (1958)
[4] Eyster, J.W., White, J.A., Wierwille, W.W., On solving multifacility location problems using a hyperboloid approximation procedure, AIIE Transacions, 5, 1–6 (1973)
[5] Morris, J.G., Convergence of the Weiszfeld algorithm for Weber problems using a generalized distance function, Oper. Res., 29, 37–48 (1981)
[6] Morris, J.G., Verdini, W.A., A simple iterative scheme for solving minisum facility location problems involving lp distances, Oper. Res., 27, 1180–1188 (1979)
[7] Iyigun, C., Ben-Israel, A., A generalized weiszfeld method for the multi-facility location problem, Oper. Res. Lett., 38, 207–214 (2010)
[8] Francis, R., McGinnis, L.F. Jr., White, J.A., Facility Layout and Location: An Analytical Approach, Prentice Hall (1992)
[9] Love, R.F., Morris, J.G., Wesolowsky, G.O., Facility Location: Models and Methods, North Holland. (1988)
[10] Wang, H. L., Wu, B. Y., & Chao, K. M., The backup 2-center and backup 2-median problems on trees. Networks, 53, 39-49 (2009)
[11] Snyder, L. V., and Daskin, M. S., Reliability models for facility location: The expected failure cost case, Trans. Sci., 39, 400-416 (2005)
[12] Cheng, Y. K., Kang, L. Y., and Yan, H., The backup 2-median problem on block graphs, Opt. Meth. and Soft., 164, 309-320 (2014)
[13] Fathali, J., Backup multifacility location problem with norm, OPSEARCH, 52, 382-391 (2014)
]14[ مدبر، ل.، علیزاده، ب.، باروقی، ف.، الگوریتمهای بهینه برای مدلهای مکانیابی 2- مرکز ناخوشایند پشتیبان روی گرافهای درختی، تحقیق در عملیات در کاربردهای آن، 13 (2)، 69-83 (1395)
[15] Fathali, J., Zaferanieh, M., and Nezakati, A., A BSSS algorithm for the location problem with minimum square error, Advances in Operations Research, Volume 2009, Article ID 212040, 10 pages (2009)
[16] Jamalian, A., and Fathali, J., Linear programming for the location problem with minimum absolute error, World Applied Sciences Journal, 7, 1423-1427 (2009)
[17] Fathali, J., Jamalian, A., Efficient methods for goal square Weber location problem, Iranian Journal of Numerical Analysis and Optimization, 7, 65-82 (2017)