A REVERSE INEQUALITY FOR SOME GENERALIZED GEOMETRIC MEANS INVOLVING UNITAL POSITIVE LINEAR MAPS
Subject Areas : StatisticsFatemeh Khosravi 1 , Amir ghasem Ghazanfari 2
1 - Department of Mathematics,
Lorestan University, P.O.Box 465,
Khoramabad, Iran.
2 - Department of Mathematics
Lorestan University
P. O. Box 465, Khoramabad, Iran.
Keywords: نگاشتهای خطی مثبت, میانگین های هندسی, شعاع طیفی, میانگین های توانی,
Abstract :
Let $B(H)$ be the $C^*$-algebra of all bounded linear operators on a complex Hilbert spaces $H$. Ando, Li and Mathias introduced a generalized geometric mean for $n$ positive definite operators. This geometric mean $G(A_{1},A_{2},dots ,A_{n})$ of any $n$-tuple of positive definite operators $mathbb{A}=(A_1,dots,A_n)$ is defined by induction.(i) $G(A_{1},A_{2})$ =$A_{1}sharp A_{2}$ (ii) Assume that the geometric mean any $(n-1)$-tuple of operators is defined. Let [G ((A_j)_{jneq i })= G(A_{1},A_{2},dots,A_{i-1},A_{i+1},dots,A_{n}), ] and let sequences ${mathbb{A}_{i}^{(r)}} _{r=1}^{infty}$ be $mathbb{A}_{i}^{(1)}= A_{i}$ and $ mathbb{A}_{i}^{(r+1)}=G((mathbb{A}_{j}^{(r)})_{jneq i }) $. If there exists $ lim_{rrightarrowinfty}{mathbb{A}_{i}^{(r)}} $, and it does not depend on $i$. Hence the geometric mean of $n$-operators is defined by begin{equation*} lim_{rrightarrowinfty}{mathbb{A}_{i}^{(r)}} = G((mathbb{A}))=G(A_{1},A_{2},dots,A_{n}) text{ for } i= 1,dots,n. end{equation*} We shall show a reverse inequality for the generalized geometric mean defined by Ando-Li-Mathias for $n$ positive definite operators, as follows: Let $Phi$ be a unital positive linear map on $B(H)$ and $r(A)$ be the spectral radius of $A$, then begin{align*} Phi(G(A_1,dots,A_n))geqleft(frac{2h}{1+h^2}right)^{n-1}G(Phi(A_1),dots,Phi(A_n)), end{align*} where $R(A_i, A_j)=max{r(A_i^{-1}A_j) ,r(A_j^{-1}A_i)}$ and $h=min_{i,j} R(A_i, A_j)$.The Karcher mean, also called the Riemannian mean, Recently it has been used in a diverse variety of settings:diffusion tensors in medical imaging and radar, covariance matrices in statistics, kernels in machine learning andelasticity. We also give a reverse inequality for the weighted power mean of $n$ positive definite operators involving unital positive linear maps.
[1] J. E. Pečarić, T. Furuta, J. Mićić Hot, Y. Seo, Mond- Pečarić Method in operator in-equalities, Element, Zagreb, 2005.
[2] T. Ando, C.-K. Li, R. Mathias, Geometric means, Linear Algebra Appl. 385 (2006) 305-334.
[3] J. Lawson and Y. Lim, Monotonic properties of the least squares mean, Math. Ann. 351(2011) 267-279.
[4] R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means, Linear Algebra Appl., 413(2006),594-618.
[5] D. Bini, B. Meini and F. Poloni, An effective matrix geometric mean satisfying the Ando-Li-Mathias properties, Math. Comp. 79 (2010) 437-452.
[6] S. Izumino, N. Nakamura, Geometric means of positive operators II, Sci. Math. 69(2009) 35-44.
[7] T. Yamazaki, An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias, Linear Algebra Appl. 416(2006) 688-695.
[8] E. Andruchow, G. Corach, D. Stojanoff, Geometrical significance of the Lowener-Heinz inequality, Proc. Amer. Math. Soc.128 (1999) 1031-1037.
[9] G. Corach, H. Porta, L. Recht, Convexity of the geodesic distance on space of positive operators, Illinois J. Math. 38 (1994) 7-94.
[10] R.D. Nussbaum, Hilberts projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. 75(391) (1988).
[11] J.I. Fujii, M. Fujii, M. Nakamura, J. Pečarić, Y.Seo, A reverse inequality for
the weighted geometric mean due to Lawson-Lim, Linear Algebra Appl. 427 (2007) 272-284.
[12] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26 (1979) 203-241.
[13] J. Mićić, J. Pečarić, Y. Seo, Complementary inequalities to inequalities of Jensen and Ando based on the Mond- Pečarić method, Linear Algebra Appl. 318 (2000) 87-107.
[14] J. Lawson and Y. Lim, Karcher means and Karcher equations of positive defnite oper- ators, Trans. Amer. Math. Soc. Ser. B, 1 (2014), 1-22.
[15] Y. Lim and M. Pálfia, Matrix power means and the Karcher mean, J. Funct. Anal., 262 (2012), 1498-1514.
[16] R. Bhatia and R. L. Karandikar, Monotonicity of the matrix geometric mean, Math. Ann., 353 (2012), 1453-1467
[17] Y. Lim and T. Yamazaki, On some inequalities for the matrix power and Karcher means, Linear Algebra Appl., 438 (2013), 1293-1304.
[18] M. Moakher, A differential geometric approach to the geometric mean of symmetric positive de_nite matrices, SIAM J. Matrix Anal. Appl.: 26 (2005), 735-747.
[19] M. Pálfia, Operator means of probability measures and generalized Karcher equations, Adv. Math., 289 (2016), 951-1007.
[20] T. Yamazaki, The Riemannian mean and matrix inequalities related to the Ando-Hiai inequality and chaotic order, Oper. Matrices, 6 (2012), 577-588.
[21] M. Fujii, M. Nakamura, J. Pečarić, Y. Seo, Bounds for the ratio and difference between parallel sum and series via Mond-Pecaric method, Math Inequal. Appl., 9(2006)749-759.