Subject Areas : تحقیق در عملیات
Elahe hajimohamadi 1 , Mansour Saraj 2 , مریم مومنی 3 , فاطمه کیانی 4
1 - Department of Mathematics,
Ahvaz Branch,
Islamic Azad University,
Ahvaz-Iran
2 - Department of Mathematics , Faculty of Mathematical Sciences , and Computer, Shahid Chamran University of Ahvaz, , Ahvaz-IRAN|Department of mathematics, Islamic Azad University, Ahvaz branch, Ahvaz-Iran
3 - Department of mathematics, Islamic Azad University, Ahvaz branch, Ahvaz-Iran
4 - دانشگاه آزاد اسلامی واحد اهواز،گروه ریاضی،
Keywords: برنامه ریزی عدد صحیح", , ", تقریب تکه خطی", برنامه ریزی هندسی", برنامه ریزی چندهدفه", ",
Abstract :
Abstract Combination of geometric programming (GP) via integer variables is one of the interesting and significant subjects in many optimization areas that has been attracted the attention of many researchers in last few decades. Since practically and in the real problems we can not consider only real variables, therefore integer variables play a very important role in such problems.Our goal in this paper is to consider a multi-objective geometric programming problem (MOGPP) with integer variables. We convert the problem in to a mixed integer non-linear programming problem on using the piecewise linear technique. In this approach each of the objective function in MOGPP is approximated on using the piecewise linear approximation. Then we solve the problem by using the weighted method and find the integer solution to the problem by applying the non-linear branch- and – bound method. Keywords: geometric programming, multi-objective programming, mixed integer non- linear programming, branch-and-bound algorithm
1. Dinkel J.J, Ellott W.H, and Kochenberger G. A. Computational aspects of cutting – plane algorithms for geometric programming problems. Springer, Mathematical programming, 13 (1): 200-220 (1977)
2. Alves M.J., and Climaco J. An interactive reference point approach for multi-objective mixed-integer programming using branch-and-bound. Elsevier, European journal of operational research, 124(31): 478-494 (2000).
3. Leyffer J., Linderoth J., Luedtke J., Andrew M., and Muson M. Application and algorithms for mixed integer non-linear programming. Journal of physics, conference series 180(1),(2009)
4. Melo W., Fampa M., and Raupp F. Integrating non-linear branch-and-bound and outer approximation for convex mixed integer non-linear programming. Springer, Journal of global optimization 60(2): 373-389(2014)
5. Dua V. Mixed integer polynomial programming. Computer and chemical engineering, 72:387-394(2015)
6. Lundell A., and Westerlund T. solving global optimization problems using reformulations and signomial transformation. Elsevier, Computer and chemical engineering, 116: 122-134(2018)
7. Shen P., and Zhang K. Global optimization of signomial geometric programming using linear relaxation. Elsevier, Applied mathematics and computational, 150(1): 99-114(2004)
8. Lundell A., Westerlund J., and Westerlund T. Some transformation techniques with applications in global optimization. Springer, Journal of global optimization, 43 (2-3): 391-405(2009)
9. Ansari M.A., and Hasanifard F. Solution of mixed integer nonlinear and non-convex optimization problem by convexification methods based on special ordered sets. (1):71-85(2017)
10. Lundell A., Skjӓl A., and Westerlund T. A reformulation framework for global optimization. Springer, Journal of global optimization, 57(1):115-141(2013)
11. Ali F.M. Technique for solving multi-objective nonlinear programming using differential equations approach. Journal of information and optimization sciences, 18 (3): 351-357(1977)
12. Roy T.K. Multi-objective geometric programming and its application in an inventory model. Fuzzy Multi-Criteria Decision Making: 539-566(2008)
13. Ehrott M.A discussion of secularization techniques for multiple objective integer programming .Annals of operation research 147(1): 343-360(2006)
14. Ojha A, and Biswal K. Multi-objective geometric programming problem with weighted mean method. arXiv preprint arXiv: 1003.1477(2010)
15. Bazikar F, and saraj M .solving linear multi-objective geometric problems via reference point approach.Sains Malaysian 43(8): 1271-1274(2014)
16. Tsai J.F., and Lin M.H. An efficient global approach for posynomial geometric programming problems. Informs journal on computing23 (3): 483-492(2011)
17. Forest J, and Tomlin J. Branch-and bound, integer and non-integer programming. Annals of operation research 149(1): 81-87(2007)
18. Hemmeck R, Koppe M, Lee J, and Weismantel R. Non-linear integer programming.50 Years of integer programming: 561-618(2010)
19. Belotti P, Kriches C, Leyffer S, Linderott J, Luedtke J, and Mahajon A. mixed integer non-linear optimization. Publish by Cambridge University (2013)
20. Tsang C.L., Zhan Y, Zheng Q.P., and Kumar M. A mixed integer linear programming formulation generalized geometric programming using piece-wise linear approximation. European journal of operational research 245(2):360-370(2015)
21.Boyd S, Kim S.J., Vandenbergh L, and Hassibi A. A tutorial on geometric programming. Optimization and engineering8 (1): 1-67(2007)
22. Steure R.E., and Wiley. Multiple criteria optimization: theory, computation, and application. New York,(1986)
23.Hatami-Marbini A ,Rostamy-Malkhalifeh M, Agrell PJ,Tavana M.Extended symmetric and asymmetric weight assignment methods in data envelopment analysis. computers and industrial engineering 8(7):621-631(2015)
24.Razipour-Ghalehjough S, Hosseinzadeh lotfi F ,jahanshahloo G.Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis.
25. Z. Mousavi1, M. Saraj , Multi Objective Geometric Programming with Interval Coefficients: A Parametric Approach. Earthline Journal of Mathematical Sciences,Volume 2, Number 2, 2019, Pages 395-407