Some of the Topological Gaps of a Generalized Metric Space
Subject Areas : StatisticsYousef Sohooly 1 , Khadijeh Jahedi 2
1 - Depth. of Math.,Islamic Azad Univ. -Shiraz Branch, Shiraz-Iran.
2 - Dept. of Math. Islamic Azad University-Shiraz Branch, Shiraz-Iran
Keywords: همگرایی آماری و چگالی طبیعی, توپولوژی تعمیمیافته به سبک سازا, واژههای کلیدی: متریک, توپولوژی, متریک تعمیمیافته,
Abstract :
In this paper, we introduce the neighborhood of each element x of the Jleli_Samet's generalized metric space (X,d) and we study some properties of the collection T_d of all unions of such neighborhoods which is called generalized topology in the sence of Csaszar. We show that some of the elementary properties on the metric spaces dose not happen on the generalized metric space in the sense of Jleli_Samet. Moreover the generalized topology T_d need not to be compatible. Also we give a sufficient condition to show that any point of the generalized metric space in the sense of Jleli_Samet, has zero self-distance. We introduce the statistical generalized metric space by replacing the concept of convergence with statistical convergence on the definition of generalized metric space in the sense of Jleli_ Samet and we show that two generalized metric spaces are equivalent.||| ||| ||| ||| ||| ||| |||
[1] Abbaspour, Gh., Taghavi, A. (2011). A Note on Generalized Topology, Vol. 6, no. 1, 19-24.
[2] Bukatin, M., Kopperman, R., Mat- thews, S., & Pajoohesh, H. (2009). Partial metric spaces, Amer. Math., Monthly, 116, 708-718.
[3] Csaszar, A. (2002). Generalized topo- logy, Generalized continuity, Acta math Hungar, 96,351-357.
[4] Csaszar, A. (2008). Remarks on quasi -topologize, Acta Math. Hungar. 119 (1-2), 197-200.
[5] Czerwik, S. (1993). Contraction map- pings in b-metric spaces, Acta Math. In- form. Univ. Ostraviensis 1, 5-11.
[6] Doitchinov, D. (1988). On comple- teness in quasi-metric spaces, Topology Appl. 30, 127-148.
[7] Y. Elkouch and E. M. Mahrani, (2017). ‘‘On Some fixed point theorem in generalized metric spaces” Fixed Point Theory and Applications.(2017:23), 1-17.
[8] Fan, X., Zhigang, W. (2016) Some fixed point theorems in generalized quasi-partial metric spaces, Jour. of Nonlinear Sci.And Appl. 9, 1659-1674.
[9] Fridy, J. A. (1985), On statistical convergence, Analysis 5, 301- 313.
[10] Friday, J. A., & Orhan, C. (1997). Statistica limit superior and limit inferior, Proc. Amer. Math. Soc.Vol 125, No. 12, 3625-3631.
[11] Hitzler, P., Seda, A. K. (2000). Dislocated topologies, J. Electr. Eng. 51, 3-7.
[12] Jleli, M., Samet, B. (2015), A gener- alized metric space and related fixed point theorems,Fixed point theory,2015:16,1-14
[13] Karapinar, E., O’ Regan, D., Rold’ an-L’ opez-de-Hierro, A. F., & Shahzad, N. (2016). Fixed point theorems in new generalized metric spaces, Fixed Point Theory Appl. 18, 645-671.
[14] Kaya, F., Kucukaslan, M. and Wagner, R., (2013), On statistical convergence and statistical mono-tonicity, Anal. Univ. Sci. Budapest, Sect. Comput. 39, 257–270.
[15] Matthews, S. G. (1995). An extensi- onal treatment of lazy data flow deadlock, Theoretical Computer Seiences, 151, 195-205.