MULTIPLIERS AND THEIR APPLICATIONS IN EARTHQUAKE ENGINEERING
Subject Areas : Statistics
1 - Department of Mathematics, Payamenoor university (PNU), Tehran, Iran.
Keywords: ضربگر, ضربگر جردن, جبر باناخ بدون مرتبه, جبر باناخ منظم آرنز,
Abstract :
In this paper we shall study the multipliers on Banach algebras and We prove some results concerning Arens regularity and amenability of the Banach algebra M(A) of all multipliers on a given Banach algebra A. We also show that, under special hypotheses, each Jordan multiplier on a Banach algebra without order is a multiplier. Finally, we present some applications of multipliers in signal theory, and in particular in earthquake engineering.
[1] M. Adib, Some topology on the space of quasi-multipliers, Bull. Iranian Math. Soc. (2018), Vol 44.
[2] M. Adib, A. Riazi and J. Braˇciˇc, Quasi-multipliers of the dual of a Banach algebra, Banach J. Math. Anal. 5 (2011), no. 2, 6–14.
[3] F. F. Bonsall and Duncan, Complete normed algebras, Berlin, Hieidelberg, New York: Springer-Verlage, (1973).
[4] L. A. Khan, Topological modules of continuous homomorphisms, J. Math. Anal. Appl, (2008).
[5] L. A. Khan and N. Mohammad and A. B. Thaheem, Double multipliers on topological algebras, Internat. J. Math and Math. Sci, (1999).
[6] R. Laursen, An introduction to theory of multipliers, New York, Springer-Verlag, (1970).
[7] A. Runde, Lectures on Amenability, Berlin, New York, Springer-Verlag, (2002).
[8] J.Vukman, A identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae, 40 (1999) 447-456.
[9] J.K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math, (1961) 1131-1149.
[10] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math, (1952) 251-261.
[11] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae, 32 (1991) 609-614.
]12[ حسن مقدم، 1390، مهندسی زلزله-مبانی و کاربرد، انتشارات کتب دانشگاه