Portfolio selection with Lower tail dependence and Extreme value theory
Subject Areas : Financial Knowledge of Securities AnalysisSaid Falahpur 1 , Samine Feyzolah 2
1 - استادیار دانشکده مدیریت، دانشگاه تهران، تهران، ایران
2 - کارشناس ارشد مهندسی مالی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران
Keywords: portfolio selection, Lower tail dependence, Extreme Value Theory,
Abstract :
Portfolio selection is an important problem in area of finance. Researchers have always tried to work with a variety of methods and strategies to achieve this important issue.In this research has been trying to present a new approach for portfolio selection with use of lower tail dependence and Extreme value theory.We show theoretically that lower tail dependence (χ), a measure of the probability that a portfolio will suffer large losses given that the market does, contains important information for risk-averse investors. We then estimate χ for a sample of stocks and show that it differs systematically from other risk measures including variance, semi-variance, skewness, kurtosis, beta, and coskewness. In out-of-sample tests, portfolios constructed to have low values of χ outperform the market index, and portfolios with high values of χ. Our results indicate that χ is conceptually important for risk-averse investors, differs substantially from other risk measures, and provides useful information for portfolio selection.
* فلاح پور، سعیدو یار احمدیی، مهدی.برآورد ارزش در معرض ریسک با استفاده از تئوری مقدار حدیدر بورس اوراق بهادار تهران، مجله مهندسی مالی و مدیریت اوراق بهادار، 1391
* Ang, A., Chen, J., Xing, Y., 2006a. Downside risk. The Review of Financial Studies19(4), 1191–1239.
* Ang, A., Hodrick, R.J., Xing, Y., Zhang, X., 2006b. The cross-section of volatilityandexpected returns. Journal of Finance 61 (1), 259–299.
* Chollete, L., De La Pena, V., Lu, C., 2011. International diversification: an extremevalue approach. Journal of Banking & Finance, 871–885.
* Cont, R., 2001. Empirical properties of asset returns: stylized facts and statisticalissues. Quantitative Finance 1, 223–236.
* Danielsson, J., De Vries, C., 1997. Tail index and quantile estimation with very highfrequency data. Journal of Empirical Finance 4 (2–3), 241–257.
* Embrechts, P., McNeil, A., Straumann, D., 2002. Correlation and dependence in riskmanagement: properties and pitfalls. In: Dempster, M.A.H. (Ed.), RiskManagement: Value at Risk and Beyond. Cambridge University Press,Cambridge, pp. 176–223.
* Harvey, C., Siddique, A., 2000. Conditional skewness in asset pricing tests. Journal ofFinance 55 (3), 1263–1295.
* Hyung, N., De Vries, C., 2005. Portfolio diversification effects of downside risk.Journal of Financial Econometrics 3 (1), 107.
* Ibragimov, R., Walden, J., 2007. The limits of diversification when losses may belarge. Journal of Banking & Finance 31 (8), 2551–2569.
* Longin, F., 2005. The choice of the distribution of asset returns: how extreme valuetheory can help? Journal of Banking and Finance 29 (4), 1017–1035.
* Longin, F., Solnik, B., 2001. Extreme correlation of international equity markets. TheJournal of Finance 56 (2), 649–676.
* Markowitz, H. 1959. Portfolio Selection: Efficient Diversification of Investments.
* McNeil, A., Frey, R., 2000. Estimation of tail-related risk measures forheteroscedastic financial time series: an extreme value approach. Journal ofEmpirical Finance 7 (3–4), 271–300.
* Poon, S., Rockinger, M., Tawn, J., 2004. Extreme value dependence in financialmarkets: diagnostics, models, and financial implications. Review of FinancialStudies 17 (2), 581