Frequency analysis of stock return rates in the Iranian capital market Based on the wavelet approach
Subject Areas : Financial Knowledge of Securities Analysisroghaye samadi tirandazi 1 , Mahin rashki Ghaleno 2 , Mohammad Mahdi 3 , Siamak Mohammadi Pour 4
1 - PhD in financial management , Faculty of Management and Economics, Sistan and Baluchestan University, Zahedan, Iran)
2 - PhD in financial management , Faculty of Management and Economics, University Of Sistan & Baluchestan, Zahedan, Iran
3 - Assistant Professor, PhD in financial management , Faculty of Management and Economics , Imam Ali University, Tehran, , Iran
4 - Master of Business Management , Faculty of Management , Islamic Azad University , Qeshm Island , Iran
Keywords: Frequency analysis, Stock Returns, Wavelet,
Abstract :
Studying and analyzing the behavior of fluctuations in the return of securities requires the discovery of a behavioral pattern of stock returns that Based on this model, shareholders are able to choose the best stocks by evaluating their stocks and other stocks in the market, and as a result, they can decide to keep, sell or replace the stocks. The main purpose of this study is to study and analyze the behavioral patterns of stock market fluctuations to show different characteristics of different layers, appropriate strategies with different horizons and evaluate the level of economic activity of investors. In this research, using discrete wavelet transform with maximum overlap in MATLAB software, stock market fluctuations in different time periods are examined and analyzed; For this purpose, Return variances of effective stock market indices during the years 2011-2020 are compared and analyzed.The results of the research showed that the wavelet variance of the total index is lower in different scales compared to the wavelet variance of the cash return index,also the wavelet variance of the stock return is more than the moving average of the stock return. According to the movement scales of each of the stock returns and the moving average of the stock returns during the long-term scales,the wavelet variance was less and the co-movement was less, but during the short-term time scales, the co-movement increased and the variance of the wavelet return was higher among them. In the end, it was suggested that investors formulate their investment strategies in a dynamic and intelligent manner according to the analysis of the behavior of the fluctuations of total indices, price and cash yield and their moving average in different time layers.
حسین کرد، مریم. شریفی، آرش. (1395) ." ارائه یک نسخه بهبود یافته از مدل فازی عصبی خطی محلی مبتنی بر تبدیل موجک گسسته به منظور پیش بینی سری های زمانی مالی". کنفرانس بین المللی مهندسی کامپیوتر و فناوری اطلاعات.
رستمی، محمد رضا .کلانتری بنجار، محمود . نوری جعفرآباد، دانیال. (1395). "بررسی هم حرکتی میان بازده شاخص صنایع مختلف در بورس اوراق بهادار تهران با بازده بازارهای نفت، طلا، دلار و یورو با استفاده از تحلیل موجک". دانش سرمایهگذاری ،5 ، 17، 227-251 .
دینارزهی ، خدیجه . شهیکی تاش ، محمدنبی . زمانیان ، غلامرضا. (1400) . " بررسی همروندی بازار سهام تهران و شاخصهای اقتصاد کلان جهانی با استفاده از تحلیلهای فرکانسی" ، فصلنامه مهندسی مالی و مدیریت اوراق بهادار ، 48، 223-252 .
زمردیان ، غلامرضا ؛ خسروانجم ، محسن .1399. بررسی رابطه نوسانات بازده سهام و رفتار سرمایه گذاران در بازار سرمایه ایران ، پژوهش های کاربردی در مدیریت و حسابداری ، 20 ، 84-96 .
فلاحی، فیروز. پورعبادالهان، محسن. صادقی، سید کمال.شکری، توحید. (1398). "بررسی رابطهی میان رشد اقتصادی و کیفیت محیط زیست در ایران: شواهدی جدید مبتنی بر تبدیل موجک پیوسته". فصلنامه علمی پژوهشهای رشد و توسعه اقتصادی .
کاظم زاده، اعظم.کریمی پتانلار، سعید . جعفری صمیمی، احمد . (1399) . "تحلیلی از اثر تنزی و اثر ضدتنزی در اقتصاد ایران: رویکرد مبدل موجک گسسته و الگوی خودرگرسیون برداری آستانهای". پژوهشنامه اقتصاد کلان، 15 ،29 ، 13-37.
مشتاق ، سعید ؛ حسین زاده لطفی ، فرهاد ؛ فدائی نژاد ، محمداسماعیل .1401. بررسی تاثیر نرخ بازده ارز بر بازده شاخص نقدی و بازده شاخص کل در بورس اوراق بهادار تهران از طریق مدل رگرسیون ARDL ، فصلنامه علمی پژوهشی دانش سرمایه گذاری ،11(41) ، 281-301 .
نادمی ، یونس . خوچیانی ، رامین . (1396). "هم حرکتی دربازارهای سهام ، ارز و طلا در ایران : یک تحلیل اکونوفیزیک" ، مهندسی مالی و مدیریت اوراق بهادار، 31 ، 149-166 .
B.O, Osu and C.U, Okonkwo and P.U. Uzoma and E.E. Akpanibah, (2020)," Wavelet analysis of the international markets: A look at the next eleven (N11)", Scientific African, 7.
Boubaker, H, & Raza, S. A. (2017), "A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets", Energy Economics, 64, 105-117..
Croce, M. M. (2014)." Long-run productivity risk: A new hope for production-based asset pricing?” Journal of Monetary Economics, 66, 13-31.
Das, D, Bhowmik, P & Jana, R.K. (2018). "A Multiscale Analysis Of Stock Return Co-movements”, Statistical Mechanics And Its Applications , 502 , 379-393 .
Hoevenaars, R. P., Molenaar, R. D., Schotman, P. C., & Steenkamp, T. (2014)." Strategic Asset Allocation For Long‐Term Investors: Parameter Uncertainty and Prior Information", Applied Econometrics, 29(3), 353-376.
Jurek, J. W., & Viceira, L. M. (2010), "Optimal value and growth tilts in long-horizon portfolios", Review of Finance, 15(1), 29-74.
Gallegati , M. (2008), "Wavelet analysis of stock returns and aggregate economic activity ", Computational Statistics & Data Analysis, 52(6), 3061-3074.
Ismail, M, Audu, B & Tumala, M. (2016). "Volatility forecasting with the wavelet transformation algorithm GARCH model: Evidence from African stock markets", Finance and Data Science, 2(2), 125-135 .
Masih, M, & Majid, H. A, (2013), "Comovement of Selected International Stock Market Indices: A Continuous Wavelet Transformation and Cross Wavelet Transformation Analysis".
Mensi, W, Rehman, M, Maitra, D, Hamed Al, K & Xuan Vinh VO, Y. (2021). "Oil , Natural Gas And Brics Stock Markets : Evidence Of Systemic Risks And Co- Movements In The Time –Frequency Domain" ,Resources Policy , 72,102062.
Saiti, B, Bacha, O. I., & Masih, M. (2016)."Testing the conventional and Islamic financial market".
Sousa, R. M. (2015), "What is the impact of wealth shocks on asset allocation?” Quantitative Finance, 15(3), 493-508.
Tiwari, A. K., Cunado, J., Gupta, R., & Wohar, M. E. (2017), "Are Stock Returns an Inflation Hedge for the UK? Evidence from a Wavelet Analysis Using Over Three Centuries of Data", Operational Research, 187(3), 1380-1401.
Yilmaz, A., & Unal, G. (2016). "Co-movement analysis of Asian stock markets against FTSE100 and S&P 500: Wavelet-based approach". International Journal of Financial Engineering, 3(04), 1650033
Zhu, L, Wang, Y & Fan, Q. (2014)," Modwt-Arma Model For Time Series Prediction”, Applied Mathematical Modelling, 38, 1859-1865.
_||_