Evaluating the Efficiency of Earth2Observe Re-Analysis Dataset and VIC-3L for Estimation of Runoff
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsSakine Koohi 1 , Asghar Azizian 2 , Luca Brocca 3
1 - Water Engineering Dept, IKIU University
2 - Assistance Professor at IKIU university, Water Engineering Dept
3 - Research Institute for Geo-Hydrological Protection IRPI, Perugia, Italy
Keywords: Hydrological models, VIC-3L, Runoff, land surface models, Earth2Observe Dataset,
Abstract :
The main objective of this study is to assess the performance of Earth2Observe's GHMs and LSMs reanalysis models in estimating runoff at the outlet of Sefidrood river basin (SRB). In addition, for better evaluating the efficiency of Earth2Observe uncalibrated models, the VIC-3L land surface model is implemented over the SRB and calibrated using observed discharges. Results showed that, based on CC and NS statistics, the performance of SURFEX-TRIP model in both daily and monthly time scales is the best one and it led to the same results as well as VIC-3L calibrated model. The values of CC and NS statistics, at daily time scale, in the case of SURFEX-TRIP model are 0.75 and 0.55, respectively, while at the monthly time scale these values are 0.86 and 0.73, respectively. As an overall, findings indicate that LSMs performs better than GHMs in simulating runoff and this may be due to the ability of LSMs in considering both water and energy budgets and they can exchange energy and mass between land surface and atmosphere. Therefore it is highly recommended to use the results of reanalysis models as an appropriate guidance, particularly in the case of ungauged catchments.
عزیزیان، ا.، شکوهی، ع .1391. ارزیابی مدل هیدرولوژیکی بزرگ مقیاس VIC-3L برای شبیه سازی دبی رودخانه و تحلیل حساسیت آن در مقیاس های زمانی مختلف (مطالعه موردی: حوضه آبریز چالوس). نشریه مهندسی عمران و محیط زیست،47(2): 39-52.
شایقی، ا.، عزیزیان، ا.، بروکا، ل .1397. ارزیابی کارائی منابع بارشی بازتحلیل شده و مبتنی بر تکنیکهای سنجش از دور جهت مدلسازی هیدرولوژیکی با استفاده از مدل بزرگ مقیاس VIC-3L . مجله تحقیقات منابع آب ایران.
Alcamo, J., Henrichs, T. and Rösch, T. 2000. World Water in 2025 -Global Modeling Scenario Analysis for the World Commission of Water for the 21st Century. Kassel, Ger. Cent. Environ. Syst. Res. Univ. Kassel.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M. and Betts, A.K. 2009. A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System. Journal of Hydrometeorology, 10: 623–643.
Beck, H.E., Van Dijk, A.I.J.M., De Roo, A., Dutra, E., Fink, G., Orth, R. and Schellekens, J. 2017. Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrology and Earth System Sciences, 21: 2881–2903. https://doi.org/10.5194/hess-21-2881-2017
Bergström, S. 1995. The HBV model in: Computer models of watershed hydrology, edited by: Singh, V. P.
Water Resources Publications, Highlands Ranch, Colorado, U.S.A.
Beven, K.J. 2012. Rainfall-runoff modelling, Wiley-Blackwell. https://doi.org/10.1002/9781119951001
Corzo Perez, G.A., Van Huijgevoort, M.H.J., Voß, F., Van Lanen, H.A.J., 2011. On the spatio-temporal analysis of hydrological droughts from global hydrological models. Hydrology and Earth System Sciences, 15: 2963– 2978. https://doi.org/10.5194/hess-15-2963-2011
Deardorff, J.W. 1978. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research, 83: 1889. https://doi.org/10.1029/JC083iC04p01889
Decharme, B., Alkama, R., Douville, H., Becker, M. and Cazenave, A. 2010. Global Evaluation of the ISBATRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage. Journal of Hydrometeorology, 11: 601–617. https://doi.org/10.1175/2010JHM1212.1
Demaria, E., Nijssen, B. and Wagener, T. 2007. Monte Carlo Sensitivity Analysis of Land Surface Parameters Using the Variable Infiltration Capacity Model. Journal of Geophysical Research, 112: 1–15.
Dutra, E., Balsamo, G. and Calvet, J.-C. 2017. Report on the improved Water Resources Reanalysis Global Earth Observation for integrated water resource assessment Report on the improved Water Resources Reanalysis. https://doi.org/10.13140/RG.2.2.14523.67369
Guimberteau, M. and Ciais, P. 2014. The hydrological modeling with ORCHIDEE in the Amazon basin.
Haddeland, I., Clark, D.B., Franssen, W., Ludwig, F., Voß, F., Arnell, N.W., Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling, S.N., Hagemann, S., Hanasaki, N., Harding, R., Heinke, J., Kabat, P., Koirala, S., Oki, T., Polcher, J., Stacke, T., Viterbo, P., Weedon, G.P. and Yeh, P. 2011. Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology, 12: 869–884. https://doi.org/10.1175/2011JHM1324.1
Hong, S.F. and Lettenmaier, Y.D. 2007. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin. Journal of Hydrometeorology, 9: 622–640.
Hyndman, Rob J, Koehler, Anne B. 2006. Another look at measures of forecast accuracy. International Journal of Forecasting. 22 (4): 679–688.
Krinner, G., Viovy, N., Noblet-ducoudre, N. De, Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S. and Prentice, I.C. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system 19. https://doi.org/10.1029/2003GB002199
Nash, J.E. and Sutcliffe, J. V. 1970. River flow forecasting through conceptual models, Part I - A discussion of principles. Journal of Hydrology, 10: 282–.092
Pearson, K. 1896. Mathematical Contributions to the Theory of Evolution.–On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs. Proceedings of the royal society of london, 60: 489–.894
Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. Physics (College. Park. Md). 1.
Sheffield, J. and Wood, E. 2008. Global trends and variability in soil moisture and drought characteristics, 1950– 2000, from observation-driven simulations of the terrestrial hydrologic cycle. Journal Climate, 21: 432–.854
Smith, K.A. 2016. Investigating Uncertainty in Global Hydrology Modelling, Ph.D.thesis 318. https://doi.org/10.13140/RG.2.2.22810.95685
Sood, A. and Smakhtin, V. 2015. Global hydrological models: a review. Hydrological Sciences Journal, 60: 549–565. https://doi.org/10.1080/02626667.2014.950580
Van Beek, L.P.H. and Bierkens, M.F.P. 2009. The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification. Department of Physical Geography Faculty of Earth Sciences Utrecht University.
van der Knijff, J.M., Younis, J. and de Roo, A.P.J. 2008. LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science, 24: 189–.212
van Dijk and A.I.J.M. 2010. The Australian Water Resources Assessment System: Technical Report 3. Landscape Model (version 0.5) Technical Description. WIRADA/CSIRO Water for a Healthy Country Flagship, Canberra, 86.
Verzano, K. 2009. Climate change impacts on flood related hydrological processes: Further development and application of a global scale hydrological model. Tech. rep., Max Planck Institute for Meteorology, Hamburg, Germany.
Zhang, Y., Zheng, H., Chiew, F.H.S., Arancibia, J.P. and Zhou, X. 2016. Evaluating Regional and Global Hydrological Models against Streamflow and Evapotranspiration Measurements. Journal of Hydrometeorology, 17: 995–1010. https://doi.org/10.1175/JHM-D-15-0107.1
_||_