Preparation and Investigation of Bioactive Properties of Protein Hydrolysates from Yogurt Whey
Subject Areas : food microbiologyN. Karimi 1 , R. Pourahmad 2 , S. Taheri 3 , O. Eyvazzadeh 4
1 - Ph.D. Candidate of the Department of Food Science & Technology, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
2 - Professor of the Department of Food Science and Technology, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
3 - Assistant Professor, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.
4 - Assistant Professor of the Department of Food Science and Technology, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
Keywords:
Abstract :
Ahn, C. B., Cho, Y. S. & Je, J. Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry, 168, 151-156.
Barbosa Pelegrini, P., Del Sarto, R. P., Silva, O. N., Franco, O. L. & Grossi-de-Sa, M. F. (2011). Antibacterial peptides from plants: what they are and how they probably work. Biochemistry Research International, 9 pp. Doi: 101155/2011/250349.
Bylund, G. (2015). Dairy Processing Handbook. 3rd. ed. Tetra Pak Pro-cessing Systems AB, Lund, Sweden.
Carrasco-Castilla, J., Hernández-Álvarez, A. J., Jiménez-Martínez, C., Jacinto- Hernández, C.,
Alaiz, M. & Girón- Calle, J. (2012). Antioxidant and metal chelating activities of
Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates. Food
Chemistry, 131, 1157-1164.
Chai, K, F., Amanda Ying Hui Voo, A. Y. H. & Chen, W. N. (2020). Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Food Science and Food Safety, 19: 3825–3885.
Chakrabarti, S., Jahandideh, F. & Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. Biomedicie Research International, 2014, 1-11.
Cheng, X., Tang, X., Wang, Q. & Mao, X. Y. (2013). Antibacterial effect and hydrophobicity of yak κ-casein hydrolysate and its fractions. International Dairy Journal, 31 (2), 111-116.
Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J. & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55.
Corrêa, A. P. F., Bertolini, D., Lopes, N.A., Veras, F.F., Gregory, G. & Brandelli, A. (2019).
Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey
hydrolysates. Food Science and Technology, 101,107-112.
De Castro, R. J. S. & Sato, H. H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 185-198.
De Gobba, C., Tompa, G. & Otte, J. (2014). Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacteriumikkense. Food Chemistry, 165, 205-215.
El-Fattah, A. M. A., Sakr, S. S., El-Dieb, S. M. & Elkashef, H. A. S. (2017). Bioactive peptides with ACE-I and antioxidant activity produced from milk proteolysis. International Journal of Food Properties, 20(12), 3033-3042.
El-Fattah, A. M. A., Sakr, S. S., El-Dieb, S. M. & Elkashef, H. A. S. (2018). Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. Food Science and Technology, 98, 390-397.
Elias, R. J., Sarah, S., Kellerby, S. S. & Decker, E. A. (2008). Antioxidant Activity of Proteins and Peptides. Critical Reviews in Food Science and Nutrition, 48, 430-441.
Gouda, A. S., Adbelruhman, F. G., Alenezi, H. S. & Mégarbane, B. (2021). Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients - A narrative review and hypotheses. Saudi Journal of Biological Science, 28 (10), 5897-5905.
Haldar, S. & Krishnananda, C. (2010). Role of Protein Stabilizers on the Conformation of the olded State of Cytochrome c and Its Early Folding Kinetics: Investigation at single molecular resolution. Journal of Biology and Chemistry, 285, 25314-25323.
Huang, S., Chen, K. N., Chen, Y. P., Hong, W. S. & Chen, M. J. (2010). Immunomodulatory properties of the milk whey products obtained by enzymatic and microbial hydrolysis. International Journal of Food Science and Technology, 45, 1061-1067.
Janine, B., Maryanne, D. & Allen, F. E. (2005). Design of a Beverage from Whey Permeate. Journal of Food Science, 70 (4), 277-285.
Jenssen, H., Hamill, P. & Hancock, R. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19, 491-511.
Ktari, N., Khaled, B. H., Nasri, R., Jellouli, K, Ghorbel, S. & Nasri, M. (2012). Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterization and potential application as a detergent additive. Food Chemistry, 130, 467-474.
Kumar, D., Kumar Chatli, M., Singh, R., Mehta, N. & Kumar, P. (2016a). Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Ruminant Research, 139, 20-25.
Kumar, D., Kumar Chatli, M., Singh, R., Mehta, N. & Kumar, P. (2016b). Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Science and Technology, 96 (3), 391-404.
Liu, Q., Kong, B., Xiong, Y. L. & Xi, X. (2010). Antioxidant Activity and Functional Properties of Porcine Plasma Protein Hydrolysate as influenced by the Degree of Hydrolysis. Food Chemistry, 118, 403-410.
Luo, Y., Pan, K. & Zhong, Q. (2014). Physical, Chemical and Biochemical Properties of Casein Hydrolyzed by Three Proteases: Partial Characterizations. Food Chemistry, 155, 146-155.
Miliauskas, G., Venskutonis, P. R. & Beek, T.A.V. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85, 231-237.
Mirzaei, M., Mirdamadi, S., Ehsani, M. R., Aminlari, M. & Hosseini, E. (2015). Purification and
identification of antioxidant and ACE-inhibitory peptid from Saccharomyces cerevisiae
protein hydrolysate. Journal of Functional Foods, 19, 259-268.
Motta, A. S. & Brandelli, A. (2002). Characterization of an antimicrobial peptide produced by Brevibacterium linens. Journal of Applied Microbiology, 92, 63-70.
Nalinanon, S. T., Benjakul, S., Kishimura, H. & Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124, 1354-1362.
Nguyen, H. T. H., Jessica, L., Gathercole, G. L., Day, L. & Dalziel, J. E. (2020). Differences in peptide generation following in vitro gastrointestinal digestion of yogurt and milk from cow, sheep and goat. Food Chemistry, 317, 126419.
Ramos-Villarroel, A. Y., Soliva-Fortuny, R. & Martın-Belloso, O. (2016). Modeling the inactivation of Listeria innocua and Escherichia coli in fresh-cut tomato treated with pulsed light. Food Bioprocess Technology, 10, 266-274.
Reed, R. G., Feldhoff, R. C., Clute, O. L. & Peters, T. (1975). Fragments of bovine serum albumin produced by limited proteolysis. Conformation and ligand binding. Biochemistry, 14, 4578-4583.
Rocha-Mendoza, D., Kosmerl, E., Krentz, A., Zhang, L., Badiger, Sh., Miyagusuku-Cruzado, G., Mayta-Apaza, A., Giusti, M., Jiménez-Flores, F. & García-Cano, I. (2020). Invited review: Acid whey trends and health benefits. Journal of Dairy Science. 104,1262–1275.
Sarmadi, B. H. & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31, 1949-1956.
Sedaghati, M., Ezzatpanah, H., Mashhadi Akbar Boojar, M., Tajabadi Ebrahimi, M. & Kobarfard, F. (2016). Isolation and identification of some antibacterial peptides in the plasmin-digest of β-casein. LWT- Food Science and Technology, 68, 217-225.
Shahidi, F. & Zhong, Y. (2008). Bioactive Peptides. Journal of AOAC International, 91, 914-931.
Shahidi, F. & Alasalvar, C. (2011). Marine oils and other marine nutraceuticals. In Alasalvar, C., Shahidi, F., Miyashita, K. & Wanasundara, U. (Eds.). Handbook of Seafood Quality, Safety and Health Applications. Oxford, UK: Wiley-Blackwell.
Shu, G., Huang, J., Bao, C., Meng, J., Chen, H. & Cao, J. (2018). Effect of Different Proteases on the Degree of Hydrolysis and Angiotensin I-Converting Enzyme-Inhibitory Activity in Goat and Cow Milk. Biomolecules, 8, 101-109.
Singh, B. P., Vij, S. & Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171-179.
Silva, S. V., Pihlanto, A. & Malcata, X. F. (2006). Bioactive Peptides in Ovine and Caprine Cheeselike Systems Prepared with Proteases from Cynaracardunculus. Journal of Dairy Science, 89 (9), 3336-3344.
Skrzypczak, K., Gustaw, W., Fornal, E., Kononiuk, A., Michalak-Majewska, M., Radzki, W. & Wa´sko, A. (2020). Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus. Applied Science, 10(7089), 1-14.
Tang, W., Zhang, H., Wang, L., Qian, H. & Qi, X. (2015).Targetedseparation of antibacterial peptidefrom protein hydrolysate ofanchovy cooking wastewater byequilibrium dialysis. Food Chemistry, 168, 115-123.
Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Science and Technology, 36, 137-143.
Vanderghem, C., Francis, F., Danthine, S., Deroanne, C., Paquot, M. & Pauw, E. D. (2011). Study on the susceptibility of the bovine milk fat globule membrane proteins to enzymatic hydrolysis and organization of some of the proteins. International Dairy Journal, 21, 312-318.
Varghese, J. & Haridas, M. (2007). Prospects of Jackfruit Blend Yoghurt Whey. World Journal of Dairy and Food Sciences, 2(1), 35-37.
Yang, L., Weiss, T. M., Lehrer, R. I. & Huang, H. W. (2000). Crystallization of antimicrobial
pores in membranes: magainin and protegrin. Biophysical Journal, 79, 2002-2009.
Zhao, L., Budge, S. M., Ghaly, A. E., Brooks, M. S. & Dave, D. (2011). Extraction, Purification and Characterization of Fish Pepsin: A Critical Review. Journal of Food Process and Technology, 2 (6), 1-14.