Effects of Rangeland Exclosure on Chemical and Organic Properties of Soil (Case study: Gonbad Area)
Subject Areas : natural resorcesAbbas Ghobadi 1 , Davoud Akhzari 2
1 - M.Sc. Student of Rangeland Management, Department of Range and Watershed Management, Malayer University, Malayer, Iran.
2 - Associate Professor, Department of Nature Engineering, Malayer University, Malayer, Iran. *(Corresponding Author)
Keywords: Exclosure, Soil Properties, Rangeland, Gonbad Watershed of Hamadan,
Abstract :
Background and Objective: Grazing as one of ecological disturbances causes changes in soil characteristics of rangelands. This study was carried out to study the effect of Grazed pasture on plant cover, microbial deposits and some soil characteristics of Gonbad in Hamedan. Method: Five transects of 1000 meters were considered separately for soil characteristics in each region (grazed and ungrazed). Systematic sampling of soil was performed every 100 meters in May 2016. The elements of Cu, Fe, K, Mg, Mn and Zn were measured by atomic absorption spectrometer, acidity with pH meter, bulk density from clavicle method, total nitrogen from Kjeldahl method, organic carbon and soil organic matter by the oxidation method of Walkybak and Zeitous Carbon microbial was calculated by quenching-extraction method. Findings: After analyzing, it was determined that the concentrations of K and Zn in the soil of the sample area and the concentration of Mg in the soil of the control area increased significantly at 5% level. Soil acidity in the control area increased from 7/1 in the sample area to 7/23. Soil moisture content decreased significantly in the control area and from 27.11% in the sample area reached 18.12%. Soil bulk density in the control area was 1.16 g / cm3, which decreased significantly in the sample area and reached 0.98 g / g / cm3. The carbon microbial biomass was significantly differed in the soil of grazed and control areas. The comparison of the mean microbial carbon content in studied rangelands showed that this parameter ranged from 0.83 g / kg in the control area (grazed) to 0.95 g / kg and increased significantly. Discussion and Conclusions: The exclosure area has been enclosed with exclosure, soil characteristics in the path of sequencing and achieving ideal conditions, but it still needs attention and continued conservation.
- Moghadam, M. R. (2009). Rangeland and rangeland management. University of Tehran Publication, Third edition, 470 P.
- Osem, Y., Perevolotsky, A., & Kigel, J. (2002). Grazing effect on diversity of annual plant communities in a semi‐arid rangeland: interactions with small‐scale spatial and temporal variation in primary productivity. Journal of Ecology, 90(6), 936-946.
- Wei, L., Hai-Zhou, H., Zhi-Nan, Z., & Gao-Lin, W. (2011). Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow. Journal of soil science and plant nutrition, 11(4), 27-39.
- Milchunas, D. G., & Lauenroth, W. K. (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological monographs, 63(4), 327-366.
- Frank, D. A., Gehring, C. A., Machut, L., & Phillips, M. (2003). Soil community composition and the regulation of grazed temperate grassland. Oecologia, 137(4), 603-609.
- Wu, J.H., S.A. Miller, H.K. Hall, & Mooney P.A. )2009(. Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell, Tissue and Organ Culture 99: 17–25.
- Ratliff, R. D. (1985). Meadows in the Sierra Nevada of California: state of knowledge.
- Yates, C. J., Norton, D. A., & Hobbs, R. J. (2000). Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south‐western Australia: implications for restoration. Austral Ecology, 25(1), 36-47.
- Toranjzar, H., Jafari, M., Azarnivand, H., & Ghanadha, M.R. (2005). Investigation of the relationship between soil properties and rangeland vegetation in Vashouneh Rangelands of Qom Province. Desert, 10(2), 349-360.
- Parissi, Z.M., A. Papaioannou, E.M. Abraham, A.P. Kyriazopoulos, P. Sklavou, & Tsiouvaras C.N. (2014). Influence of combined grazing by wild boar and small ruminant on soil and plant nutrient contents in a coppice oak forest. Journal of Plant Nutrition and Soil Science 177: 783–791.
- Mohammadi Golrang, B., Gezanchian, Gh., Ramezani Moghadam, R., Felahati, H., Rouhani, H., & Mashayekhi, M. (2008). Estimation of forage weight of several species of rangelands by measuring the diameter and plant height. Journal of Rangeland and desert Researches of Iran, 15(2), 158-178.
- Kohandel, A., Arzani, H., & Hosseni Tavasol, M. (2010). Determination of the effect of grazing intensities on soil and vegetation characteristics using multivariable components. Quarterly journal of Iranian rangeland and desert research, 17(4), 518-526.
- Hiernaux, P., Bielders, C.L., Valentin, V., Bationo, A., & Fernández-Rivera, S. (1999). Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. Journal of Arid Environments 41 (3): 231–245
- Briske, D.D., & Richards, J. H. (1995). Plant responses to defoliation: a physiological, morphological and demographic evaluation. Wildland plants: physiological ecology and developmental morphology. Society for Range Management, Denver, CO, 635-710.
- Lavado, R.S., J.O. Sierra, & Hashimoto, P.N. (1996). Impact of grazing on soil nutrients in a Pampean grassland. Journal of Range Management 49: 452-457.
- Bilotta, G. S., R.E. Brazier, and Haygarth P.M. (2007). The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Advances in Agronomy 94: 237–280.
- Technical Office of the Provincial Natural Resources Management of the Hamadan Province. (2016).
- Sparling GP and West AW, 1988. A direct extraction method to estimate soil microbial carbon: Calibration in situ using microbial respiration and 14C labeled sells. Soil Biol Biochem 20: 337- 343.
- Kavianpour, A.H., Heshmati, Gh., & Hosseni, H. (2015). Investigation of changes in soil characteristics and rangeland yield due to different grazing grazing intensities (Case study: Nasha Mazandaran bird rangelands). Journal of Water and Soil Science, 25(4), 157-168.
- Smoliak, S., J.F. Dormaar and Johnston, A. (1972). long-term grazing effects on Stipa-Bouteloua prairie soils, J. Range manage. 25:246-250.
- Hiernaux, P., C.L. Bielders, C. Valentin, A. Bationo, and Fernández-Rivera, S. (1999). Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. Journal of Arid Environments 41 (3): 231–245
- Matano, A.S., C.K. Kanangire, D.N. Anyona, P.O. Abuom, F.B. Gelder, G.O. Dida, P.O. Owuor, and Ofulla, A.V.O. (2015). Effects of land use change on land degradation reflected by soil properties along Mara River, Kenya and Tanzania. Open Journal of Soil Science 5: 20-38.
- Martínez, K., Fernández, J. (1996). Spatial variabilidad of the physiological propensities and hysterics of the media in mediterranean semi-arid. Universidad de Murcia.
- Liu, N., Zhang, Y., Chang, S., Kan, H., & Lin, L. (2012). Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PloS one, 7(5), e36434.
- Kioko, J., J.W. Kiringe, and Seno, S.O. (2012). Impacts of livestock grazing on a savanna grassland in Kenya. Journal of Arid Land 4(1): 29-35.
_||_
- Moghadam, M. R. (2009). Rangeland and rangeland management. University of Tehran Publication, Third edition, 470 P.
- Osem, Y., Perevolotsky, A., & Kigel, J. (2002). Grazing effect on diversity of annual plant communities in a semi‐arid rangeland: interactions with small‐scale spatial and temporal variation in primary productivity. Journal of Ecology, 90(6), 936-946.
- Wei, L., Hai-Zhou, H., Zhi-Nan, Z., & Gao-Lin, W. (2011). Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow. Journal of soil science and plant nutrition, 11(4), 27-39.
- Milchunas, D. G., & Lauenroth, W. K. (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological monographs, 63(4), 327-366.
- Frank, D. A., Gehring, C. A., Machut, L., & Phillips, M. (2003). Soil community composition and the regulation of grazed temperate grassland. Oecologia, 137(4), 603-609.
- Wu, J.H., S.A. Miller, H.K. Hall, & Mooney P.A. )2009(. Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell, Tissue and Organ Culture 99: 17–25.
- Ratliff, R. D. (1985). Meadows in the Sierra Nevada of California: state of knowledge.
- Yates, C. J., Norton, D. A., & Hobbs, R. J. (2000). Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south‐western Australia: implications for restoration. Austral Ecology, 25(1), 36-47.
- Toranjzar, H., Jafari, M., Azarnivand, H., & Ghanadha, M.R. (2005). Investigation of the relationship between soil properties and rangeland vegetation in Vashouneh Rangelands of Qom Province. Desert, 10(2), 349-360.
- Parissi, Z.M., A. Papaioannou, E.M. Abraham, A.P. Kyriazopoulos, P. Sklavou, & Tsiouvaras C.N. (2014). Influence of combined grazing by wild boar and small ruminant on soil and plant nutrient contents in a coppice oak forest. Journal of Plant Nutrition and Soil Science 177: 783–791.
- Mohammadi Golrang, B., Gezanchian, Gh., Ramezani Moghadam, R., Felahati, H., Rouhani, H., & Mashayekhi, M. (2008). Estimation of forage weight of several species of rangelands by measuring the diameter and plant height. Journal of Rangeland and desert Researches of Iran, 15(2), 158-178.
- Kohandel, A., Arzani, H., & Hosseni Tavasol, M. (2010). Determination of the effect of grazing intensities on soil and vegetation characteristics using multivariable components. Quarterly journal of Iranian rangeland and desert research, 17(4), 518-526.
- Hiernaux, P., Bielders, C.L., Valentin, V., Bationo, A., & Fernández-Rivera, S. (1999). Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. Journal of Arid Environments 41 (3): 231–245
- Briske, D.D., & Richards, J. H. (1995). Plant responses to defoliation: a physiological, morphological and demographic evaluation. Wildland plants: physiological ecology and developmental morphology. Society for Range Management, Denver, CO, 635-710.
- Lavado, R.S., J.O. Sierra, & Hashimoto, P.N. (1996). Impact of grazing on soil nutrients in a Pampean grassland. Journal of Range Management 49: 452-457.
- Bilotta, G. S., R.E. Brazier, and Haygarth P.M. (2007). The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Advances in Agronomy 94: 237–280.
- Technical Office of the Provincial Natural Resources Management of the Hamadan Province. (2016).
- Sparling GP and West AW, 1988. A direct extraction method to estimate soil microbial carbon: Calibration in situ using microbial respiration and 14C labeled sells. Soil Biol Biochem 20: 337- 343.
- Kavianpour, A.H., Heshmati, Gh., & Hosseni, H. (2015). Investigation of changes in soil characteristics and rangeland yield due to different grazing grazing intensities (Case study: Nasha Mazandaran bird rangelands). Journal of Water and Soil Science, 25(4), 157-168.
- Smoliak, S., J.F. Dormaar and Johnston, A. (1972). long-term grazing effects on Stipa-Bouteloua prairie soils, J. Range manage. 25:246-250.
- Hiernaux, P., C.L. Bielders, C. Valentin, A. Bationo, and Fernández-Rivera, S. (1999). Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. Journal of Arid Environments 41 (3): 231–245
- Matano, A.S., C.K. Kanangire, D.N. Anyona, P.O. Abuom, F.B. Gelder, G.O. Dida, P.O. Owuor, and Ofulla, A.V.O. (2015). Effects of land use change on land degradation reflected by soil properties along Mara River, Kenya and Tanzania. Open Journal of Soil Science 5: 20-38.
- Martínez, K., Fernández, J. (1996). Spatial variabilidad of the physiological propensities and hysterics of the media in mediterranean semi-arid. Universidad de Murcia.
- Liu, N., Zhang, Y., Chang, S., Kan, H., & Lin, L. (2012). Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia. PloS one, 7(5), e36434.
- Kioko, J., J.W. Kiringe, and Seno, S.O. (2012). Impacts of livestock grazing on a savanna grassland in Kenya. Journal of Arid Land 4(1): 29-35.