Selection of Different Decision Variables in the Steam Section for the Exergoeconomic Analysis of a TCCGT Power Plant
Subject Areas : environmental managementashkan abdalisosan 1 , maryam fani 2 , bejan farhaniye 3
1 - استادیار گروه فنی و مهندسی، دانشگاه آزاد اسلامی واحد آستارا (مسوول مکاتبات)
2 - استادیار گروه مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، پردیس فنی شهید عباسپور
3 - استاد گروه مهندسی مکانیک، دانشگاه صنعتی شریف
Keywords: Combined-cycle power plant, Exergy efficiency, Exergy cost, Exergoeconomic analysis, Decision variable,
Abstract :
Introduction: The major target of this paper shows effect of selected decision variables in the steam system foroptimization of thermal combined cycle power plant.Material and method: Exergoeconomic, and other similar terms used to imply the combined thermodynamicand economic analysis of energy systems, which helps to increase the efficiency of a plant without jeopardizingits economic viability. The optimization accomplished using an iterative exergoeconomic. The design data of anexisting plant (Damavand combined cycle power plant in Tehran) used for the present analysis.Results and Diction: Two different objective functions proposed: one minimizes the total cost of production perunit of output, and the other maximizes the total exergetic efficiency. The analysis shows that the total cost ofproduction per unit of output is 2% lower and exergy efficiency is 4% higher with respect to the base case. Itdemonstrates that selected decision variables have a good result for the exergy analysis and cost effectiveness
- Christos A. Frangopoulos. (2009).” Exergy, Energy System Analysis and Optimization”, Volume I, page21, EOLSS Publishers.
- Groniewsky A., (2013).” Exergoeconomic optimization of a thermal power plant using Particle swarm optimization”, Thermal Science: Vol. 17, No. 2, pp. 509-524.
- Yantovski E., (2000).” Exergonomics in education”, Energy 25, 1021–1031.
- Balli O., Haydar Aras and Arif Hepbasli. (2008).” Exergoeconomic analysis of a combined heat and power (CHP) system”, Int. J. Energy Res.32, 273–289.
- Kreith F., (2000).” The CRC Handbook of Thermal Engineering”, Boca Raton: by CRC Press LLC.
- Fani M., Mozafari A., Farhanieh B., (2008). “Exergoeconomic Optimization of Black Liquor Gasification Combined Cycle by use of Evolutionary and Conventional Iterative Exergoeconomic Optimization Method”, Accepted to be appeared in International journal of Chemical Reactor Engineering.
- Ahmadi P., Ibrahim Dincer. (2010).”Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)”, Energy 35, 5161-5172, Elsevier.
- Khorasani Nejad E., Hadi Choopan, S.Morteza Javadpour. (2012).” Exergoeconomic Multiobjective Optimization of a Cogeneration Plant System Using Evolutionary Algorithm”, American Journal of Advanced Scientific Research, Vol. 1, Issue. 5, pp. 222-231.
- Bejan A., Tsatsaronis G., Moran M., (1996). “Thermal Design and Optimization”, John Wiley & Sons, Inc., U.S.A.
- Shakib S.E., amid pour M., Aghanajafi C., (2012).” Simulation and optimization of multi effect desalination coupled to a gas-turbine plant with HRSG consideration”, Desalination 285.
- Abedin A., McIlveen-Wright. (2013).” A Feasibility Study of Co-Firing Biomass in the Thermal Power Plant at Soma in order to Reduce Emissions: an Exergy Approach”, Int. J. Environ. Res. 7(1), 139-154.
Uhlenbruck F., Lucas K., (2004).” Exergoeconomically aided evolution strategy applied to a combined cycle power plant”, International Journal of Thermal Sciences 43, 289–296, Elsevier