Two Dimensional Modeling of Net Water Renewal Time in Gorgan Bay
Subject Areas : Water and Environmentsaeed sharbaty 1 , Hamed Kolangi Miandareh 2
1 - Faculty Member of Fisheries Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. * (Corresponding Author)
2 - Faculty Member of Fisheries Department, Gorgan University of Agricultural Sciences and Natural Resources Gorgan, Iran.
Keywords: Modeling, Two Dimensional, Net Renewal Time, Gorgan Bay, Mike21 FM,
Abstract :
Background and Objective: Net Renewal Time is one of the most important indicators for water quality analysis in the water bodies. In this study, in order to investigate the Net water Renewal Time in Gorgan Bay, two modules from two dimensional Mike21FM model including Advection-Dispersion and Hydrodynamic were coupled. Method: Modeling was performed under 4 different scenarios with inclusion of some factors such as wind stress, river input, precipitation, evaporation and water fluctuations in spans of Ashoradeh-Bandaretorkaman. Findings: The modeling results showed that integral Net Renewal Time in Gorgan Bay was 0.0181 per days. Variations in the amounts of Net Renewal Time were strongly influenced by prevailing hydrodynamic regime in Gorgan Bay. Net Renewal Time in distance of 1 km from the input spans was less than one day. This time index rate decreases by moving along longitudinal axis of the bay from east to west. Net Renewal Time in northeastern area was more than the corresponding areas in southeastern part. There was no significant difference in the Net Renewal Time for southern and northern parts of the west area. The modeling results in the four seasons showed that the Renewal amounts in winter and spring were more than those in summer and fall, and these results were consistent with increasing and decreasing inter-annual water level trend in the Caspian Sea, respectively. Conclusion: Due to the low water Net Renewal Time in Gorgan Bay, it can be concluded that the water flushing system has very low speed in this water body and any use of it must be done with further studies and arrangements.
1- Monsen, N.E., Cloern, J.E., Lucas, L.V., Stephen, G.M., 2002. A Comment on the Use of Flushing Time, Residence Time, and Age as Transport Time Scales. Journal of Limnology and Oceanography, Vol. 47(5), pp.1545-1553.
2- Manoj, N.T., 2012. Estimation of Flushing Time in a Monsoonal Estuary using Observational and Numerical Approaches. Nat. Hazards, Vol. 64, pp.1323-1339.
3- Umgiesser, G., Canu, D.M., Cucco, A., Solidoro, C.A., 2004. Finite element model for the Venice Lagoon. Development, set up, calibration and validation. Journal of Marine Systems, Vol. 51(4), pp.123-145.
4- Gillibrand, P.A., 2001. Calculating exchange times in a Scottish fjord using a two-dimensional, laterally-averaged numerical model. Estuarine Coastal and Shelf Science, Vol. 53, pp.437–449.
5- Brenes, C.L., Hernandez, A., Ballesteros, D., 2007. Flushing time in Perlas Lagoon and Bluefields Bay, Nicaragua. Investigations Marinas, Vol. 35(1), pp. 89-96.
6- Wang, Y., Ridd, P.V., Heron, M.L., Stieglitz, T.C., Orpin, A.L., 2007. Flushing time of solutes and pollutants in the central Great Barrier Reef lagoon, Australia. Marine and Freshwater Research, Vol. 58, pp. 778–791.
7- Ouillon, S., Fraunie, P., Jouon, A., Douillet, P., 2006. Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Continental Shelf Research, Vol. 26, pp.1395–1415.
8- Sheldon, J.E., and Alber, M., 2006. The Calculation of Estuarine Turnover Times Using Freshwater Fraction and Tidal Prism Models: A Critical Evaluation. Journal of Estuaries and Coasts, Vol. 29(1), pp.133–146.
9- Stamou, I., Katsiris, I.K., Moutzouris, C.I., Tsoukala, V.K., 2004. Improvement of marina design technology using hydrodynamic models. Global Nest: the Int. J. Vol. 6(1), pp. 63-72.
10- Hun-Wei Lee, J., Qian, A., 2003. Three-Dimensional Modeling of Hydrodynamic and Flushing in deep bay. International Conference on Estuaries and Coasts, Hangzhou, China, pp13.
11- Sadrinasab, M., Kampf, J., 2004. Three-dimensional flushing times of the Persian Gulf. Geophysical Research Letters, Vol. 31, pp. 301-305.
12- شهریاری. ع، کبیر. م.ج، گلفیروزی. ک، 1387، وضعیت آلودگی میکروبی آب دریای خزر در خلیج گرگان، مجله علمی دانشگاه علوم پزشکی گرگان، دوره 10، شماره2، صص 69 تا 73.
13- Sharbaty, Saeed., 2012. Simulation of wind-driven waves in the Gorgan bay. Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering and Medicine, Vol. 3(2), pp. 40-44.
14- رحیمیپور انارکی. ح، 1381، بررسی هیدرودینامیک جریان و پیش بینی الگوی فرسایش و رسوبگذاری در خلیج گرگان، گزارش طرح تحقیقاتی، شرکت جهاد تحقیقات آب و انرژی، 85 صفحه.
15- شربتی. س، ایمانپور. م.ر، گرگین. س، حسینی. س.س، 1389، فاز اول مطالعات شبیهسازی کوتاه مدت جریانات دریایی در خلیج گرگان، گزارش طرح پژوهشی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، 41 صفحه.
16- Manual of MIKE21. 2007. Coastal Hydraulic and Oceanography Hydrodynamic Module. Danish Hydraulic Institute (DHI Software). pp. 74-85.
17- Smith, S.D., Bank, G., 2007. Variation of the sea drag coefficient with wind speed. Quart. Met. Soc, Vol. 101, pp. 665-673.
18- محمدخانی. ح، 1391، تهیه و اجرای آبزیپروری خلیج گرگان، گزارش طرح پژوهشی، مرکز تحقیقات ذخایر آب،زیان آب های داخلی گرگان، فصل دوم، بخش هیدرولوژی، 314 صفحه.
19- Smagorinsky, J., 1963. General circulation Experiments with the primitive equations, Monthly Weather Review, Vol. 91, pp. 91-164.
20- لاهیجانی. ح، اردکانی. ح.ا، شریفی. آ، بنی نادری. ع.م، 1389، شاخصهای رسوبشناختی و ژئوشیمیایی رسوبات خلیج گرگان، مجله اقیانوسشناسی، دوره 1، شماره 1، صص 45 تا 55.
21- Dix, J.K., Lambkin, D.O., Cazenave, P.W., 2007. Development of a Regional Sediment Mobility Model for Submerged Archaeological Sites. University of Southampton, English Heritage ALSF Project No. 5224.
22- شربتی. س، حسینی. س.س، 1391، شبیهسازی دو بعدی الگوی جریان خلیج گرگان در خلال یک دوره یکساله، گزارش طرح پژوهشی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، 29 صفحه.
23- Vanderborght, J.P., Folmer, I.M., Aguilera, D.R., Uhrenholdt, T., Regnier, P., 2007. Reactive-transport modelling of C, N, and O2 in a river–estuarine–coastal zone system: Application to the Scheldt estuary, Journal of Marine Chemistry, Vol. 106, pp.92-110.
24- Arneborg, L., 2004. Turnover times for the water above sill level in Gullmar Fjord. Continental Shelf Research, Vol. 24, pp.443–460.
25- Koutitonski, V.G., Guyondet, T., St-Hillaire, A., Courtenay, S.C., Bohgen, A., 2004. Water Renewal Estimates for Aquaculture Developments in the Richibucto Estuary, Canada. Journal of Estuaries, Vol. 27(5), pp. 839–850.
26- قانقرمه. ع، 1389، نوسانات آب دریای خزر (سال آبی 1387-1388) و عوامل محیطی موثر بر آن، گزارش طرح تحقیقاتی، مرکز ملی مطالعات دریای خزر، 96 صفحه.
27- Herzfeld, M., Parslow, J., Andrewartha, J., Sakov, P., Webster, I.T., 2004. Hydrodynamic Modelling of the Port Curtis Region, Technical Report 7, National Library of Australia, pp51.
28- Trowbridge, P., 2007. Hydrologic Parameters for New Hampshire’s Estuaries. Technical Report, NHEP Coastal Scientist, New Hampshire Department of Environmental Services, pp172.
_||_