Forecasting fluctuations of gold coin futures price on Iran mercantile exchange using parametric methods
Subject Areas :
Journal of Investment Knowledge
mohamad esmail fadainejad
1
,
ali saleabadi
2
,
gholamhosein asadi
3
,
mohamad taghi vaziri
4
,
hasan taati kashani
5
1 - beheshti university
2 - imam sadegh university
3 - beheshti university
4 - california uited univesity
5 - Beheshti university
Received: 2018-04-21
Accepted : 2018-07-30
Published : 2020-08-22
Keywords:
Futures market,
Fluctuation,
Markov-switching GARCH,
Abstract :
One of the most important topics in financial markets in recent decades is the forcasting. The main purpose of this study is to forcast volatility future prices.In this research, four groups of symmetric GARCH (GARCH), exponential GARCH, FIGARCH and multi-regime GARCH models have been estimated and forecasted using normal distribution, t-distribution and GED distribution. According to the model error for forecasting fluctuations, the Markov Switching GARCH model (MS-E-GARCH) is reported to be the most efficient model to forecast the fluctuations in the gold coin futures market.The results of the estimation by the Markov Switching GARCH model (MS-E-GARCH) show that fluctuations of gold coin futures market are predictable; and as a result the gold coin futures prices do not have the weak form of efficiency in both low and high volatility settings and systematic profits could be achieved in this market. According to the results of the study, the accuracy of MS-E-GARCH model is higher for GED distribution in comparison with other models.
References:
شعرایی، سعید (1389) بررسی وجود حافظه بلند مدت در بورس اوراق بهادار تهران ، مجله حسابداری مالی، شماره 6، ص 173
سعیدی، حسین؛ محمدی، شاپور، (1390) ، پیش بینی نوسان بازده بازار با استفاده از مدل های ترکیبی، فصلنامه بورس اوراق بهادار، سال چهارم، 16
گل ارضی، غلامحسین ؛ چهره نگار، اشکان، (1394) مقایسه عملکرد روش فضای حالت با روش حداقل مربعات معمولی OLS در برازش مدل سه عاملی فاما و فرنچ برای پیشبینی بازده، در بورس اوراق بهادار تهران، مدیریت دارایی و تامین مالی، شماره 9
Anderson(1985), Determinates of the volatility of future price, journal of future matket, vio5,
Anderson and Danthin (1983), The time pattern of hedging and the volatility futures price, Review of Economic studies, vol 50
Baillie, R. T., & Myers, R. J. (1991). Bivariate GARCH estimation of the optimal 1998commodity futures hedge. Journal Applied Econometrics, 6, 109–124.
Bildirici, M., Ersin, O.O., (2013). Forecasting Oil Prices: Smooth Transition and Neural Network Augmented GARCH Family Models. Journal of Petroleum cience and Engineering,. 109,. 230-240
Bryant, H. L., Bessler, D. A. & Haigh, M. S. (2006). Causality in futures markets. The Journal of Futures Markets, 26, 1039–1057.
Bollerslev, T., and Mikkelsen, H. O. (1996): “Fractionally integrated generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, 74,3–30.
Chkili, W., Hammoudeh, Sh., Nguyen, D., (2014). Volatility Forecasting and Risk Management for Commodity Markets in the Presence of Asymmetry and Long Memory. Energy Economics,. 41,. 1-18.
Chang, E., Chou, R. Y., & Nelling, E. F. (2000). Market volatility and the demand for hedging in stock index futures. The Journal of Futures Markets, 20, 105–125.
Chang, E. R., Pinegar, M., & Schachter, B. (1997). Interday variations in volume, variance and participation of large speculators. Journal of Banking & Finance, 21, 797–810.
Crato, N., & Ray, B. K. (2000). Memory in returns and volatilities of futures The Journal of Futures Markets, 20(6), 525–543.
Crato, N. (1994): “Some international evidence regarding the stochastic memory of stock returns,” Applied Financial Economics 4, 1, 33-39.
De Lima, P. and Crato, N. (1993): “Long-memory in stock returns and volatilities,” American Statistical Association, Proceedings of the Business and Economic Statistics Section
Jin, H. J., & Frechette, D. L. (2004). Fractional integration in agricultural futures price volatilities. American Journal of Agricultural Economics, 86(2), 432–443.
Harris, R.D.F., Nguyen, A., (2013). Long Memory Conditional Volatility and Asset Allocation. International Journal of Forecasting,. 29(2),. 258-273.
Hurst, H.E. “The Long-Term Dependence in Stock ” Transactions of the American Society of Civil Engineers 116(1951):770–99.
Kang, S.H., Cheong, C., Yoon, S.M., (2010. Long Memory Volatility in Chinese Stock Markets. Physica A: Statistical Mechanics and its Applications,. 389, Issue. 7,. 1425-1433
Kasman, A., Kasman, S., Torun, E., (2009). Dual Long Memory Property in Returns and Volatility: Evidence From The CEE Countries' Stock Markets. Emerging Markets Review,. 10,. 2,. 122-139.
Mun, M., Brooks, R., (2012). The Roles of News and Volatility in Stock Market Correlations during the Global Financial Crisis. Emerging Markets Review,. 13, Issue. 1,. 1-7.
Poon S-H, Granger CW (2003) Forecasting financial market volatility: a review. J Econ Lit 41:478–539
Samuelson, P. (1965). Proof that properly anticipated prices fluctuate randomly. Industrial Management Review, 6, 41–49.
Tan, P.P., Galagedera, D. U. & Maharaj, E.A. (2012). A wavelet based investigation of long memory in stock returns. Physica A, 391, 2330–2341.
Tornell, A., & Yuan, C. (2012). Speculation and hedging in the currency futures markets: Are they informative to the spot exchange rates. The Journal of Futures Markets, 32, 122–151
Ying, Jiang and Shamin, Ahmed and Xiaoquan, Liu(2016) Volatility forecasting in the Chinese commodity futures market with intraday data. Review of Quantitative Finance and Accounting
Wang, C. (2002a). The effect of net positions by type of trader on volatility in foreign currency futures markets. The Journal of Futures Markets, 22, 427–450.
Williams, J., & Wright, B. (1991). Storage and commodity markets. Cambridge, UK: Cambridge University Press.
Zhou, Jian & Kang, Zhixin. (2011). A Comparison of Alternative Forecast Models of REIT Volatility. Journal of Real Estate Finance Economics,. 275-294.
_||_