Evaluate the Ability of Social Networks to Predict the Direction and Stock Prices in Tehran Stock Exchange
Subject Areas : Journal of Investment KnowledgeReza Raie 1 , Seyed Farhang Hoseini 2 , Maedeh Kiani Harchegani 3
1 - Finance Professor,Tehran University
2 - PhD Student, Department of Financial Management, Tehran University
3 - MSc, Department of Financial Management, Science and Research branch,Islamic Azad University
Keywords: Social network, Price Forecast, Price Direction Forecast, Neural Network,
Abstract :
Examining the ability and efficiency of social network on price and direction of stock price is important, because of social network boom. In this research, we observe the herding behavior based on buy and sell offer in one of the Iranian social network (sahamyab.com) using neural network. The duration of research between July 2013to June 2014(1year) and based on TSE is divided to period of bull and bear market. The sample is selected on two hypotheses, ten symbols from active stocks listed by TSE and another ten symbol from most viewed and active on social network. This research done on two parts: direction forecast and price forecast. Historical price and buy/sell offer in social network with 3 to 10 lags used. Feed forward neural network (FFNN) with 3 to 10 data lags and 1 hidden layer and up to twenty neuron used to find optimal network and used to forecast. In price forecast, there is no significant difference, But in directional of stock price forecast, we found that it's significant for most viewed share in bull market and for active share in bear market.
* انقیاد، هادی (1388)، "استفاده از شبکه عصبی مصنوعی (ANN) جهت مدلسازی کوتاه مدت شاخص قیمت سهام (TEPIX)" پایان نامه کارشناسی ارشد، دانشگاه آزاد واحد علوم و تحقیقات تهران.
* سعیدی.علی، فرهانیان. سیدمحمد جواد، (1390)، مبانی اقتصاد و مالی رفتاری، تهران، شرکت اطلاع رسانی و خدمات بورس
* راعی . رضا ، چاوشی . کاظم ، (1382 ) ، پیش بینی بازده سهام در بورس اوراق بهادار : مدل شبکه های عصبی مصنوعی و مدل چند عاملی ، مجله تحقیقات مالی ، دوره 5 ، شماره 1 ، بهار و تابستان 1382
* متوسلی . محمود ، طالب کاشفی . بیژن ، (1385) ، بررسی مقایسه ای توان شبکه های عصبی با ورودی شاخص های تحلیل تکنیکی برای پیش بینی قیمت سهام ، نامه مفید ، شماره 54 ، تیر 1385
* Baker, H. K., &Nofsinger, J. R. (Eds.). (2010). Behavioral finance: investors, corporations, and markets (Vol. 6). John Wiley & Sons.
* Bikhchandani, S., & Sharma, S. (2000). Herd behavior in financial markets. IMF Staff papers, 279-310.
* Bollen, J., Mao, H., &Zeng, X. (2011). Twitter mood predicts the stock market.Journal of Computational Science, 2(1), 1-8.
* Geva, T., &Zahavi, J. (2014). Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news. Decision Support Systems, 57, 212-223.
* Hirshleifer, D., & Hong Teoh, S. (2003). Herd behaviour and cascading in capital markets: A review and synthesis. European Financial Management, 9(1), 25-66.
* Li, Q., Wang, T., Li, P., Liu, L., Gong, Q., & Chen, Y. (2014). The effect of news and public mood on stock movements. Information Sciences, 278, 826-840.(b)
* Li, X., Xie, H., Chen, L., Wang, J., & Deng, X. (2014). News impact on stock price return via sentiment analysis. Knowledge-Based Systems.
* Nagar, A., &Hahsler, M. (2012). Using Text and Data Mining Techniques to extract Stock Market Sentiment from Live News Streams. International Proceedings of Computer Science & Information Technology, 47.
* Neubeck, K. J., &Glasberg, D. S. (2004). Sociology: Diversity, conflict, and change. Recording for the Blind & Dyslexic.
* Nofsinger, J. R. (2005). Social mood and financial economics. The Journal of Behavioral Finance, 6(3), 144-160.
* Oliveira, N., Cortez, P., & Areal, N. (2013). On the Predictability of Stock Market Behavior Using StockTwits Sentiment and Posting Volume. In Progress in Artificial Intelligence (pp. 355-365). Springer Berlin Heidelberg.
* Qiu, L., Rui, H., &Whinston, A. (2013). Social network-embedded prediction markets: The effects of information acquisition and communication on predictions. Decision Support Systems, 55(4), 978-987.
* Ruiz, E. J., Hristidis, V., Castillo, C., Gionis, A., &Jaimes, A. (2012, February). Correlating financial time series with micro-blogging activity. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 513-522). ACM.
* Sarle, W.S., (1997), "Neural network FQA, part 1 of 7: introduction". Retrieved june 2003, from periodic posting to the usenetnewgroupcomp.si.neural-nets, fttp://ftp.sas.com/pub/neural/FQA.html.
* Shepard, J. M. (2012). Cengage Advantage Books: Sociology. Cengage Learning.
* Zirilli, J.S, (1997), "Financial prediction using neural network", uk:international Thomson publishing