Estimating Conditional Value at Risk (CVaR) with consideration the robust of the measure based on robust Cipra method
Subject Areas : Journal of Investment KnowledgeEhsan Mohammadian Amiri 1 , Ehsan Mohammadian Amiri 2 , Seyed Babak Ebrahimi 3
1 - MSc. Student in Financial Engineering, Faculty Of Industrial Engineering, K.N.Toosi University Of Technology,Tehran
2 - MSc. Student in Financial Engineering, Faculty Of Industrial Engineering, K.N.Toosi University Of Technology,Tehran
3 - Assistant Prof., Faculty Of Industrial Engineering, K.N.Toosi University Of Technology, Tehran, Iran (Corresponding Author)
Keywords: Value at risk, Conditional Value at Risk, Robust Cipra method, GARCH Family,
Abstract :
Since the atmosphere of financial markets is uncertain and ambiguous, Conditional Value at Risk measurement has been of great importance in recent years for financial companies and micro and macro investors. In this paper, we estimate the CVaR of the Tehran Stock Exchange Index for distribution of the Trial Student at confidence levels of 95% and 99% based on the Cipra method, which is proposed as a new approach for the estimation of the CVaR. In order to evaluate the performance of this approach, the comparison between the said approach and the conventional methods of GARCH, EGARCH and TGARCH was performed using four backtesting of unconditional coverage test, conditional coverage test, joint test and Lopez loss function test. The results show that robust Cipra method has a better and more reliable performance than the other methods in estimating the CVaR.
* فلاح پور سعید، رضوانی فاطمه، رحیمی محمدرضا. (1394). برآورد ارزش در معرض ریسک شرطی (CVaR) با استفاده از مدلهای ناهمسانی واریانس شرطی متقارن و نامتقارن در بازار طلا و نفت. مجله دانش مالی تحلیل اوراق بهادار، 8(26)،1-18.
* کشاورز حداد غلامرضا، صمدی باقر. (1388). برآورد و پیشبینی تلاطم بازدهی در بازار سهام تهران و مقایسه دقت روش ها در تخمین ارزش در معرض خطر: کاربردی از مدلهای خانوده .FIGARCH مجله تحقیقات اقتصادی، 1(44)، 193-235.
* محمدیان امیری احسان، ابراهیمی سید بابک، افراسیابی نژاد مریم. (1396). ارائه رویکردی جدید جهت برآورد استوار ارزش در معرض ریسک؛ رهیافت مقایسهای. مجله مهندسی صنایع و مدیریت دانشگاه صنعتی شریف، زیر چاپ.
* Acerbi, C., & Tasche, D. (2002). Expected shortfall: a natural coherent alternative to value at risk. Economic notes, 31(2), 379-388.
* Angelidis, T., Benos, A. and Degiannakis, S. (2004) The use of GARCH models in VaR estimation. Statistical methodology, 1(1), pp.105-128.
* Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.
* Christoffersen, P. F. (1998). Evaluating interval forecasts. International economic review, 841-862.
* Cipra, T. (1992). Robust exponential smoothing. Journal of Forecasting, 11(1), 57-69.
* Croux, C., Gelper, S., & Mahieu, K. (2011). Robust control charts for time series data. Expert Systems with Applications, 38(11), 13810-13815.
* Dimson, E., & Marsh, P. (1990). Volatility forecasting without data-snooping. Journal of Banking & Finance, 14(2), 399-421.
* DUAN, J. S., & GONG, Z. Y. (2011). The Stock Index Futures Market Price Risk Measurement System——Empirical Study Based on CVaR-GARCH-R/S Fractal [J]. Journal of Shanxi Finance and Economics University, 5, 004.
* Gelper, S., Fried, R., & Croux, C. “Robust forecasting with exponential and Holt–Winters smoothing”, Journal of forecasting, 29(3), pp. 285-300 )2010).
* Gencay, R., & Selcuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287-303.
* Kim, M., & Lee, S. (2016). Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation. Computational Statistics & Data Analysis, 94, 1-19.
* Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The J. of Derivatives, 3(2).
* Kjellson, B. (2013). Forecasting Expected Shortfall: An Extreme Value Approach.
* Lopez, J. A. (1999). Methods for evaluating value-at-risk estimates. Economic review, 2, 3-17.
* Mendes, R. R. A., Paiva, A. P., Peruchi, R. S., Balestrassi, P. P., Leme, R. C., & Silva, M. B. (2016). Multiobjective portfolio optimization of ARMA–GARCH time series based on experimental designs. Computers & Operations Research, 66, 434-444.
* Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370.
* Pagan, A. R., & Schwert, G. W. (1990). Alternative models for conditional stock volatility. Journal of econometrics, 45(1), 267-290.
* Yamai, Y., & Yoshiba, T. (2002). Comparative analyses of expected shortfall and value-at-risk: their estimation error, decomposition, and optimization. Monetary and economic studies, 20(1), 87-121.
* Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and control, 18(5), 931-955
_||_