حل مسائل مقدار اولیه کوشی – اویلر فازی مرتبه دوم تحت مشتق پذیری توسعه یافته
Subject Areas : International Journal of Industrial Mathematics
1 - گروه ریاضی، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران.
Keywords: معادلات کوشی-اویلر, معادلات دیفرانسیل فازی, معادلات دیفرانسیل, مشتق پذیری توسعه یافته,
Abstract :
در این مقاله، ما یک کلاس از مسائل مقداراولیه فازی مرتبه دوم که در حالت معمول، به معادلات دیفرانسیل کوشی-اویلر معروف هستند، را مطالعه می کنیم. این کار با مطالعه کردن ساختار تابع جواب در حالت معمول و فراهم کردن فضایی مطلوب از توابع مشتق پذیر توسعه یافته، آغاز می شود. در ادامه، فرایند تولید و ساخت فرمول های جواب همراه با جزئیات بحث شده است. در نهایت، بوسیله حل چند مثال، فرمول های یافت شده، مورد استفاده قرار گرفته و تشریح شده اند.
[1] S. Abbasbandy, T. Allahviranloo, Numerical solution of fuzzy differential equation by Runge-Kutta method,Nonlinear studies 11 (2004) 117-129.
[2] MZ. Ahmad, MK. Hasan, B. De Baets, Analytical and numerical solutions of fuzzy differential equations, Information Sciences 236 (2013) 156-167.
[3] O. Akin, T. Khaniyev, O. Oruc, IB. Turksen, An algorithm for the solution of second order fuzzy initial value problems, Expert Systems with Applications 40 (2013) 953-957.
[4] T. Allahviranloo, N. Ahmady, E. Ahmady, Numerical solution of fuzzy differential equations by predictor-corrector method, Information Sciences 177 (2007) 1633-1643.
[5] T. Allahviranloo, M. Chehlabi, Solving fuzzy differential equations based on the length function properties, Soft Computing 19 (2015) 307-320.
[6] T. Allahviranloo, NA. Kiani, M. Barkhordari, Toward the existence and uniqueness of solutions of second-order fuzzy differential equations,Information Sciences 179 (2009) 1207-1215.
[7] LC. Barros, LT. Gomes, PA. Tonelli, Fuzzy differential equations: An approach via fuzzification of the derivative operator, Fuzzy Sets and Systems 230: (2013) 9-52.
[8] B. Bede, TC. Bhaskar, V. Lakshmikantham, Perspectives of fuzzy initial value problems, Communications in Applied Analysis 11 (2007) 339-358.
[9] B. Bede, SG. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations,Fuzzy Sets and Systems 5 (2005) 581-599.
[10] B. Bede, SG. Gal, Solution of fuzzy differential equations based on generalized differentiability, Communications in Mathematical Analysis 9 (2010) 22-41.
[11] B. Bede, IJ. Rudas, AL. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Information Sciences 177 (2007) 1648-1662.
[12] B. Bede, L. Stefanini, Solution of fuzzy differential equations with generalized differentiability using LU-parametric representation, EUSFLAT 11 (2011) 785-790.
[13] WE. Boyce, RC. Diprima, Elementary differential equations and boundary value problems, Printed in the United States of America, New York, (2000).
[14] JJ. Buckley, T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems 110 (2000) 43-54.
[15] Y. Chalco-Cano, H. Rom´an-Flores, On new solutions of fuzzy differential equations, Chaos, Solitons & Fractals 38 (2008) 112-119.
[16] Y. Chalco-Cano, H. Rom´an-Flores, Comparation between some approaches to solve fuzzy differential equations, Fuzzy Sets and Systems 160 (2009) 1517-1527.
[17] Y. Chalco-Cano, H. Rom´an-Flores, MD. Jimenez-Gamero, Generalized derivative and π-derivative for set-valued functions, Information Sciences 181 (2011) 2177-2188.
[18] JR. Chasnov, Differential equations with youTube examples, 1st edition, Bookboon.com, (2014).
[19] M. Chehlabi, T. Allahviranloo, Solution to a class of first-order fuzzy Cauchy-Euler differential equations, Mathematical Sciences Letters 5 (2016) 189-194.
[20] D. Dubois, H. Prade, Towards fuzzy differential calculus: Part 3, Differentiation, Fuzzy Sets and Systems 8 (1982) 225-233.
[21] NA. Gasilov, SE. Amrahov, AG. Fatullayev, A geometric approach to solve fuzzy linear systems of differential equations, Applied Mathematics & Information Sciences 5 (2011) 484-499.
[22] NA. Gasilov, S¸E. Amrahov, AG. Fatullayev, A new approach to fuzzy initial value problem, Soft Computing 18 (2014) 217-225.
[23] A. Khastan, JJ. Nieto, R. Rodr´ıguez-Lop´ez, Variation of constant formula for first order fuzzy differential equations, Fuzzy Sets and Systems 177 (2011) 20-33.
[24] A. Khastan, K. Ivaz, Numerical solution of fuzzy differential equations by Nystr¨om method, Chaos, Solitons & Fractals 41 (2009) 859-868.
[25] JJ. Nieto , A. Khastan, K. Ivaz, Numerical solution of fuzzy differential equations under generalized differentiability,Nonlinear Analysis: Hybrid Systems 3 (2009) 700-707.
[26] R . Rodr´ıguez-L´opez, On the existence of solutions to periodic boundary value problems for fuzzy linear differential equations, Fuzzy Sets and Systems 219 (2013) 1-26.
[27] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987) 319-330.
[28] L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis: Theory, Methods & Applications 71 (2009) 1311-1328.
[29] L. Stefanini, B. Bede, Generalized fuzzy differentiability with LU-parametric representation, Fuzzy Sets and Systems 257 (2014) 184-203
[30] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions I, Fuzzy Sets and Systems 120 (2001) 523-532.