Solving a Joint Availability-Redundancy Optimization Model with Multistate Components and Metaheuristic Approach
Subject Areas : International Journal of Industrial MathematicsA. H. Borhani Alamdari‎‎‎ 1 , M. Sharifi 2
1 - Department of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
2 - Department of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
Keywords: بهینهسازی قابلیت اطمینان, تابع مولد جهانی, الگوریتم شبیه سازی تبرید, اجزای چند حالته, مشکلات تخصیص افزئنگی, الگوریتم ژنتیک,
Abstract :
مشکل تخصیص افزونگی (RAP) یکی از مهمترین و کاربردی ترین مسائل در زمینه قابلیت اطمینان است. هدف از این مشکل یافتن پیکربندی مطلوب اجزای سیستم به منظور بهینه سازی قابلیت اطمینان سیستم تحت برخی محدودیتها است. در مدل کلاسیک، اجزای مولفه سیستم باینری است، به عنوان مثال، هر مولفه آن است که آیا جزء در حال کار است یا هراب شده است. در مطالعات جدید تحقیقاتی، اجزاء به عنوان اجزاء چند حالته در نظر گرفته می شوند، به عنوان مثال، هر جزء میتواند برخی از حالتهای عملکردی بینابینی از سالم تا خراب را دارا باشد. در این مقاله، ما بر روی مسئله RAP با اجزاء چند حالته کار کرده و نرخ عملکرد اجزاء در هر یک از حالتهای عملکردی با صرف هزینه و انجام فعالیتهای فنی و سازمانی قابل افزایش میباشد. به دلیل آنکه مسئله تخصیص افزونگی از جمله مسائل سخت میباشد، ما برای حل مدل ارائه شده از دو الگوریتم فراابتکاری ژنتیک و شبیه سازی تبرید استفاده کرده و همچنین از تابع مولد عمومی برای محاسبه قابلیت اطمینان سیستم استفاده کردهایم.
[1] A. Chambari., An efficient simulated annealing algorithm for the redundancy allocation problem with a choice of redundancy strategies, Reliability Engineering & System Safety 11 (2013) 158-164.
[2] M. S. Chern, On the computational complexity of reliability redundancy allocation in a series system, Operations research letters 15 (1992) 309-315.
[3] Y. Ding, A. Lisnianski, Fuzzy universal generating functions for multi-state system reliability assessment, Fuzzy Sets and Systems 159 (2008) 307-324.
[4] V. Ebrahimipour, S. Asadzadeh, A. Azadeh, An emotional learning-based fuzzy inference system for improvement of system reliability evaluation in redundancy allocation problem, The International Journal of Advanced Manufacturing Technology 11 (2013) 1-16.
[5] V. Ebrahimipour, M. Sheikhalishahi, Application of multi-objective particle swarm optimization to solve a fuzzy multi-objective reliability redundancy allocation problem, in Systems Conference (SysCon), 2011 IEEE International, (2011) IEEE.
[6] D. E. Fyffe, W. W. Hines, N. K. Lee, System reliability allocation and a computational algorithm, IEEE Transactions on Reliability 17 (1968) 64-69.
[7] J. Gago, Exact cost minimization of a seriesparallel reliable system with multiple component choices using an algebraic method, Computers & Operations Research 40 (2013) 2752-2759.
[8] H. Garg, M. Rani, S. Sharma, An efficient two phase approach for solving reliability redundancy allocation problem using artificial bee colony technique, Computers & Operations Research 40 (2013) 2961-2969.
[9] H. Garg, S. Sharma, Multi-objective reliability-redundancy allocation problem using particle swarm optimization, Computers & Industrial Engineering 64 (2013) 247-255.
[10] J. H. Holland, Adaptation in natural and artificial systems, An introductory analysis with application to biology, control and artificial intelligence, Ann Arbor, MI: University of Michigan Press, (1975).
[11] K. Khalili Damghani, A. R. Abtahi, M. Tavana, A Decision Support System for Solving Multi Objective Redundancy Allocation Problems, Quality and Reliability Engineering International 30 (2014) 1249-1262.
[12] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, science 220 (1983) 671-680.
[13] G. Levitin, Reliability of series-parallel systems with random failure propagation time, IEEE Transactions on Reliability 62 (2013) 637-647.
[14] I. D. Lins, E. L. Droguett, Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and discrete event simulation, Simulation Modelling Practice and Theory 19 (2011) 362-381.
[15] I. Lins, E. Droguett, Multiobjective optimization of redundancy allocation problems in systems with imperfect repairs via ant colony and discrete event simulation, in Proceedings of the European Safety & Reliability Conference (ESREL). Valencia, Spain, (2008).
[16] I. D. Lins, E. L. Droguett, Multiobjective optimization of availability and cost in repairable systems design via genetic algorithms and discrete event simulation, Pesquisa Operacional 29 (2009) 43-66.
[17] A. Lisniaski, G. Levitin, Multi-state system reliability: assessment, in Optimization and Application, World Scientific Singapore, (2003).
[18] Y. Liu, A joint redundancy and imperfect maintenance strategy optimization for multistate systems, IEEE Transactions on Reliability 62 (2013) 368-378.
[19] G. S. Liu, Availability optimization for repairable parallel-series system by applying Tabu-GA combination method. in Industrial Informatics (INDIN), (2012) 10th IEEE International Conference on. 2012. IEEE.
[20] I. Maatouk, E. Chtelet, N. Chebbo, Availability maximization and cost study in multi-state systems, in Reliability and Maintainability Symposium (RAMS), 2013 Proceedings-Annual. (2013). IEEE.
[21] S. M. Mousavi, Two tuned multi-objective meta-heuristic algorithms for solving a fuzzy multi-state redundancy allocation problem under discount strategies, Applied Mathematical Modelling 39 (2015) 6968-6989.
[22] M. Ouzineb, M. Nourelfath, M. Gendreau, A heuristic method for non-homogeneous redundancy optimization of series-parallel multi-state systems, Journal of Heuristics 17 (2011) 1-22.
[23] M. Ouzineb, M. Nourelfath, M. Gendreau, Tabu search for the redundancy allocation problem of homogenous series parallel multistate systems, Reliability Engineering & System Safety, 8 (2008) 1257-1272.
[24] V. K. Sharma, M. Agarwal, Ant colony optimization approach to heterogeneous redundancy in multi-state systems with multistate components. in Reliability, Maintainability and Safety, 2009. ICRMS (2009). 8th International Conference on. 2009, IEEE.
[25] I. Ushakov, Universal generating function, Soviet Journal of Computer Systems Science 24 (1986) 118-129.