Extended Transportation Problem with Non-Homogeneous Costs and Non-explicit Output- A DEA Based Method
Subject Areas : International Journal of Industrial Mathematicsسعید محرابیان 1 , علی هادی 2 , حسین قهری 3
1 - گروه ریاضی، دانشگاه خوارزمی، تهران، ایران.
2 - گروه ریاضی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
3 - گروه ریاضی، دانشگاه خوارزمی، تهران، ایران.
Keywords:
Abstract :
[1] A. Amirteimoori, An extended transportation problem: a DEA based, Central European Journal of Operations Research 14 (2011) 513-521.
[2] A. Amirteimoori, An extended shortest path problem: A data envelopment anlysis approach, Applied Mathmatics Letters 7 (2012) 1839-1843.
[3] C. P. J. Lovell, Radial DEA models without inputs or without output, European Journal of Operational Research 118 (1999) 46-51.
[4] G. R. Jahanshahloo, A Method for solving 0-1 multiple objective Linear programming problem using DEA, J. Oper. Res. Society of Japan 46 (2003) 1189-202.
[5] F. Meng, B. Su, E. Thomson, D. Zhou, P. Zhou, Measuring Chinas regional energy and carbon emission effciency with DEA models: A survey, Appl. Energy 183 (2016) 1-21.
[6] F. Hosseinzadeh Lotfi, Relationship between MOLP and DEA based on output-orientated CCR dual model, Expert Systems with Applications 37 (2010) 4331-4336.
[7] L. H. Chen, An extended assignment problem considering multiple inputs and outputs, Appl. Math. Model 3 (2007) 2239-2248.
[8] Mokhtar S. Bazaraa, Linear programming and network flows, New York: Willey, 2011.
[9] K. Djordjevic, Evaluation of EnergyEnvironment Effciency of European Transport Sectors: Non-Radial DEA and TOPSIS Approach, energies 12 (2019) 1-27.
[10] W. Maity, A new approach for solving dualhesitant fuzzy transportation problem with restrictions, Indian Academy of Sciences 75 (2018) 44-75.
[11] S. Steuer, Multiple Criteria Optimization: Theory, Computation and Application, New York: Joun Wiley and Sons, 1986.
[12] M. Zarafat, L. Angiz, An alternative approach to assignment problem with nonhomogeneous costs using common set of weights in DEA, Far. East J. Appl. Math. 10 (2003) 29-39.
[13] S. Saati, Generalized Dealing Problems with Fuzzy Differential Costs with the help of DEA, Quaterly J. of Sciences 18 (2008) 255-271.
[14] V. Gurupada Maity, Analyzing multimodal transportation problem and its application, Neural Computing and Applications 5 (2019).
[15] Y. Sudipta Midya, Intuitionistic fuzzy multistage multiobjective fixedcharge solid transportation problem in a green supply chain, International Journal of Machine Learning and Cybernetics 20 (2020).
[16] L. Cardillo, A DEA model for the efficiency evaluation of nondominated paths on a road network, European J. Oper. Res 121 (2000) 549-558.
[17] A. Charnes, Measuring the efficiency of decision making units, European Journal of Operational Research 2 (1978) 429-444.