یک روش فازی زدایی برای حل مسایل برنامه ریزی خطی
Subject Areas : International Journal of Industrial MathematicsRahim Saneifard 1 , Rasoul Saneifard 2
1 - Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran
2 - Department of Engineering, Texas Southern University, Houston, Texas, USA.
Keywords: برنامه ریزی خطی تمام فازی, جواب بهینه دقیق فازی, تابع رتبه بندی, شعاع دوران,
Abstract :
یک روش فازی زدایی برای حل مسایل برنامه ریزی خطی
[1] T. Allahviranloo, S. Abbasbandy and R. Saneifard, A method for ranking of fuzzy numbers using new weighted distance, Mathematical and Computational Applications 2 (2011) 359-369.
[2] T. Allahviranloo, S. Abbasbandy, R. Saneifard, An approximation approach for ranking fuzzy numbers based on weighted interval-value, Mathematical and Computational Applications 3 (2011) 588-597.
[3] S. J. Chen, S. M. Chen, Fuzzy risk analysis based on similarity of generalized fuzzy numbers,IEEE Transactions on Fuzzy Systems 11 (2003) 45-56.
[4] C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and Systems 95 (1998) 307-317.
[5] L. H. Chen, H. W. Lu, An approximate approach for ranking fuzzy numbers based on left and right dominance, Computers and Mathematics with Applications 41 (2001) 1589-1602.
[6] L. H. Chen, H. W. Lu, The preference order of fuzzy numbers, Computers and Mathematics with Applications 44 (2002) 1455-1465.
[7] T. Chu, C. Tsao, Ranking fuzzy numbers with an area between the centroid point and original point, Computers and Mathematics with Applications 43 (2002) 11-117.
[8] D. Dubois, H. Prade, Ranking of fuzzy numbers in the setting of possibility theory, Information Science 30 (1983) 183-224.
[9] H. W. Lu, C. B. Wang, An index for ranking fuzzy numbers by belief feature, Information and Management Sciences 16 (2005) 57-70.
[10] S. Murakami, S. Maeda, S. Imamura, Fuzzy decision analysis on the development of a centralized regional energy control system, In Proceedings of the IFAC symposium on fuzzy information, knowledge representationand decision analysis (1983) 363-368, Tokyo, Japan.
[11] Rahim Saneifard, Rasoul Saneifard, The Median Value of Fuzzy Numbers and its Applications in Decision Making, Journal of Fuzzy Set Valued Analysis http://dx.doi. org/10.5899/2012/jfsva-00051/.
[12] R. Saneifard, T. Allahviranloo, F. Hosseinzadeh and N. Mikaeilvand, Euclidean ranking DMU’s with fuzzy data in dea, Applied Mathematical Sciences 60 (2007) 2989-2998.
[13] R. Saneifard, A method for defuzzification by weighted distance, International Journal of Industrial Mathematics 3 (2009) 209-217.
[14] R. Saneifard, Ranking L-R fuzzy numbers with weighted averaging based on levels, International Journal of Industrial Mathematics 2 (2009) 163 - 173.
[15] R. Saneifard, Defuzzification method for solving fuzzy linear systems, International Journal of Industrial Mathematics 4 (2009) 321-331.
[16] R. Saneiafrd, Some properties of neural networks in designing fuzzy systems, Neural Computing and Appllications http://dx.doi.org/10.1007/s00521-011-0777-1/.
[17] R. Saneiafrd, Designing an algorithm for evaluating decision-making units based on neural weighted function, Neural Computing and Appllications http://dx.doi.org/10.1007/s00521-012-0878-5/.
[18] Y. M. Wang, J. B. Yang, D. L. Xu, K. S. Chin, On the centroids of fuzzy numbers, Fuzzy Sets and Systems 157 (2006) 919-926.
[19] R. R. Yager, On a general class of fuzzy connectives,Fuzzy Sets and Systems 4 (1980) 235-242.
[20] D. Yong, L. Qi, A TOPSIS-based centroidindex ranking method of fuzzy numbers and its application in decision-making, Cybernetics and Systems 36 (2005) 581-595.