Comparison of the Efficiency of Fe3O4 Magnetite Nanoparticles and Zero-valent Iron Nanoparticles in the Advanced Oxidation Process Based on Diproxipersulfate in Sewage Treatment of Leather Industry
Subject Areas : Environment Pullotion (water and wastewater)Seyed mohsen Beladi 1 , roya mafigholami 2 , Ali Hashemi zavareh 3
1 - Master of Environmental Civil Engineering, Department of Environment, Faculty of Art and Architecture, Islamic Azad University, Tehran West Branch.
2 - Associate Professor, Department of Environment, Faculty of Art and Architecture, Islamic Azad University, Tehran West Branch.*(Corresponding Author)
3 - Master of Environmental Civil Engineering, Department of Environment, Faculty of Art and Architecture, Islamic Azad University, Tehran West Branch.
Keywords: Industrial wastewater, Magnetic iron, Advanced oxidation, Output effluent.,
Abstract :
Background and Objective: Industrial wastewater treatment is more difficult than urban sewage due to the presence of various pollutants. Sewage produced in the leather industry should be treated to the environment due to having a pollution load and the presence of high chloride ion before discharge. The advanced oxidation process based on dioxy persulfate is considered a new process in the presence of active agents. This process has a great capability in wastewater treatment with high pollution. In this study, the anion process of persulfate was used with the activation of magnetic iron (Fe3O4) and zero-valent iron at laboratory scale in order to treat and reduce the organic load (COD) waste water of leather industry. Material and Methodology: In this process, the effect of primary pH variables of wastewater (5-9), reaction time (0-60 minutes), Anion concentration of persulfate (50-200 mg per liter) and the amount of iron-containing nanoparticles (0.5-2 grams per liter) were investigated. Findings: The best conditions of the advanced oxidation process in the presence of zero-valent iron include pH 3، The amount of magnetic iron nanoparticles was equal to one gram per liter and the amount of dioxy persulfate was equal to 100 mg per liter. During the mentioned conditions, the efficiency of the process was achieved by 85 percent. The findings revealed that the initial COD (COD process reduced 3,700 milligrams per liter to below 1,000 milligrams per liter ¬COD final to 555 milligrams per liter. Discussion and Conclusion: Advanced oxidation process based on dioxy persulfate in the presence of iron compounds (zero-valent iron and magnetic iron) due to high performance (removal of 85 percent of primary COD and reduction to 555 milligrams per liter, can be used for decomposition and mineralization of pollutants, pollutants, water, especially industrial sewage. The effluent from this system can be drained into municipal wastewater treatment plants, so by reducing COD to 555 mg per liter, it still cannot be used alone.
1. Markham AC. A brief history of pollution: Routledge; 2019.
2. Chávez, A., Gimeno, O., Rey, A., Pliego, G., Oropesa, A., & Álvarez, P., et al. (2019). “Treatment of highly polluted industrial wastewater by means of sequential aerobic biological oxidation-ozone based AOPs”. Chemical Engineering Journal. Vol. 361, Pages 89-98.
3. Ayare, SD., Gogate, PR., (2019). “Sonocatalytic treatment of phosphonate containing industrial wastewater intensified using combined oxidation approaches”. Ultrasonics sonochemistry. Vol. 51, Pages 69-76. doi.org/10.1016/j.ultsonch.2018.10.018
4. Kamali, M., Persson, KM., Costa, ME., & Capela, I., (2019). “Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: Current status and future outlook”. Environment international. Vol.125. Pages 261-276. DOI: 10.1016/j.envint.2019.01.055 .(In Persian)
5. Chauhan, PS., Kant, R., Rai, A., Gupta, A., Bhattacharya, S., (2019).” Facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation”. Materials Science in Semiconductor Processing. 89:6-17.
6. Saeed, T., Khan, T., (2019). “Constructed wetlands for industrial wastewater treatment: Alternative media, input biodegradation ratio and unstable loading”. Journal of Environmental Chemical Engineering. 7(2):103042. (In Persian)
7. Esplugas, S., Bila, DM., Krause, LGT., & Dezotti, M., (2007). “Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents”. Journal of Hazardous Materials. Vol.149, Issue 3, Pages 631-642.
8. Burdon, F., Munz, N., Reyes, M., Focks, A., Joss, A., & Räsänen, K., (2019). “Agriculture versus wastewater pollution as drivers of macroinvertebrate community structure in streams”. Science of the Total Environment.Vol. 659. Pages 1256-1265. https://doi.org/10.1016/j.scitotenv.2018.12.372
9. Antonie RL., (2018). “Fixed biological surfaces-wastewater treatment: the rotating biological contactor: CRC press”.
10. Fiorentino, A., Di Cesare, A., M. Eckert, E., Rizzo, L., Fontaneto, D., Yang, Y., & Corno, G., (2019). “Impact of industrial wastewater on the dynamics of antibiotic resistance genes in a full-scale urban wastewater treatment plant”. Science of the Total Environment. Vol.646, Pages 1204-1210. doi.org/10.1016/j.scitotenv.2018.07.370
11. Gardziella, A., Pilato, LA., & Knop A., (2013). “Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology”. Springer Berlin Heidelberg.
12. Tawakkoly, B., Alizadehdakhel, A., Dorosti, F., (2019). “Evaluation of COD and turbidity removal from compost leachate wastewater using Salvia hispanica as a natural coagulant”. Industrial Crops and Products. Vol.137, Pages 323-331. DOI:10.1016/j.indcrop.2019.05.038
13. Bolyard, SC., Mohaghegh Motlagh, A., Lozinski, D., & Reinhart, DR., (2019). “Impact of organic matter from leachate discharged to wastewater treatment plants on effluent quality and UV disinfection”. Waste Management. Vol.88, Pages 257- 267. doi: 10.1016/j.wasman.2019.03.036.
14. Weilu Yang., Minghua Zhou., Nihal Oturan., Yawei Li ., Pei Su., Mehmet A. Oturan., (2019). “Enhanced activation of hydrogen peroxide using nitrogen doped graphene for effective removal of herbicide 2, 4-D from water by iron-free electrochemical advanced oxidation”. Electrochimica Acta. Vol.297, Pages 582-592. doi.org/10.1016/j.electacta.2018.11.196
15. Yingwu Yao., Bingli Ren., Yang Yang., Chunjiao Huang., & Mengyao Li., (2019). “Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process”. Journal of hazardous materials. Vol. 361, Pages 141-151. doi.org/10.1016/j.jhazmat.2018.08.081
16. Asadollahfardi, G., Zangooei, H., Motamedi, V., & Davoodi, M., (2018). “Selection of coagulant using jar test and analytic hierarchy process: A case study of Mazandaran textile wastewater”. Vol.7, Issue 1, Pages 1-11. (In Persian) DOI:10.12989/aer.2018.7.1.001
17. Rachel H Waldemer ., Paul G Tratnyek., Richard L Johnson., & James T Nurmi., (2007). “Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products”. Environmental science & technology. Vol.41, Issue 3, Pages 1010-1015. doi: 10.1021/es062237m
18. Wei Hong Wang., George E. Hoag., John B. Collins., & Ravi Naidu., (2013). “Evaluation of Surfactant-Enhanced In Situ Chemical Oxidation (S-ISCO) in Contaminated Soil”. Water, Air, & Soil Pollution. Vol. 224, Issue 12, Pages 1-9. DOI:10.1007/s11270-013-1713-z
19. Imtyaz Hussain., Yongqing Zhang., Shaobin Huang., Xiaozhe Du., (2012). “Degradation of< i> p-chloroaniline by persulfate activated with zero-valent iron”. Chemical Engineering Journal. Vol. 203, Pages 269-76.
20. Xiaoxuan Jiang ., Yanlin Wu., Peng Wang., Hongjing Li., & Wenbo Dong., (2013). “Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion”. Environmental Science and Pollution Research. Vol. 20, Issue 7. Pages 4947-53. doi: 10.1007/s11356-013-1468-5.
21. Bagbi, Y., Sarswat, A., Tiwari, S., Mohan, D., Pandey, A., & Solanki, PR., (2017). “Synthesis of l-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water”. Environmental Nanotechnology, Monitoring & Management. Vol.7, Pages 34-45. doi.org/10.1016/j.enmm.2016.11.008
22. Jingzi Beiyuan., Jiang-Shan Li., Daniel C W Tsang., Lei Wang., Chi Sun Poon., Xiang-Dong Li ., & Scott Fendorf., (2017). “Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong”. Science of The Total Environment. Vol. 599-600, Pages 679-688. DOI: 10.1016/j.scitotenv.2017.04.208
23. Xiang-Rong Xu., Xiang-Zhong Li., (2010). “Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion”. Separation and purification technology. Vol.72, Issue 1, Pages 105-111. doi.org/10.1016/j.seppur.2010.01.012
24. Oh, S-Y., Kang, S-G., & Chiu, PC., (2010). “Degradation of 2, 4-dinitrotoluene by persulfate activated with zero-valent iron”. Science of the Total Environment. 408(16), Pages 3464-8. DOI: 10.1016/j.scitotenv.2010.04.032
25. Gholi Kandi. G.B, Sadat Hoseini S, Afsari. F, Efficiency review of the advanced oxidation process of the Fred Fenton in the removal of organic matter from the saltwater effluent of the leather industry, 2016; 42(4), 839-854. (In Persian)
26. Rahmani, A., Almasi, H., Bajalan, S., Rezaei Vahidian, H., Zarei, A., & Shabanloo, A., (2017). “Optimization of Ciprofloxacin Antibiotic Sonochemical Degradation with Persulfate Activated by Nano Zero-Valent Iron by Central Composite Design Method”. Journal of Health Vol. 8, Issue. 3, Pages 231-245 (In Persian)
27. Shabanlo, A., Khorshidi, M., & Seid Mohammadi, A., (2018). “Synergistic effect investigation of persulfate and nano zero-valent iron in degradation of Acid Blue 113 in the presence of 40 KHz ultrasonic irradiation” Vol.24, Issue 6, Pages 81-93. (In Persian)
28. Kitis, M., Kaplan, SS., Karakaya, E., Yigit, N O., Civelekoglu, G., (2006). “Adsorption of natural organic matter from waters by iron coated pumice”. Chemosphere. Vol.66. Issue 1, Pages 130-38.
29. Teruhiko Ishikawa., Tadashi Miyahara., Mami Asakura., & Shuichi Higuchi., (2005). “One-Pot Multistep Synthesis of 4-Acetoxy-2-amino-3-arylbenzofurans from 1-Aryl-2-nitroethylenes and Cyclohexane-1,3-diones”. Chemistry. Vol. 7, Issue 7, Pages 1211-1214. DOI:10.1021/ol047540b
30. Nihal, Oturan., Jie, Wu., Hui, Zhang., Virender, K Sharma., & Oturan, Mehmet A., (2013). “Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials”. Applied Catalysis B: Environmental. Vol. 140, Pages 92-97. doi.org/10.1016/j.apcatb.2013.03.035
31. Sopaj, F., Oturan, N., Pinson, J., Podvorica, F., & Oturan, MA., (2016). “Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine”. Applied Catalysis B: Environmental. Vol.199, Pages 331-341. doi.org/10.1016/j.apcatb.2016.06.035
32. Heng Lin., Jie Wu., Hui Zhang., (2013). “Degradation of bisphenol A in aqueous solution by a novel electro/Fe 3+/peroxydisulfate process”. Separation and Purification Technology. Vol.117, Pages 18-23. DOI:10.1016/j.seppur.2013.04.026
33. Lingjun Bu. Shiqing Zhou., Zhou Shi., Lin Deng., Guangchao Li., Qihang Yi., & Naiyun Gao., (2015). “Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways”. Environmental science and pollution research international. Vol.23, Issue 3, Pages 2848-55. doi: 10.1007/s11356-015-5524-1.
34. Wenhai, Chu., Dongmei, Li., Naiyun, Gao., Michael¬R,-Templeton., Chaoqun, Tan., & Yuqiong, Gao., (2015). “The control of emerging haloacetamide DBP precursors with UV/persulfate treatment. Water research”. Vol.72 Pages 340-348. doi: 10.1016/j.watres.2014.09.019
35. Lei, Zhou., Wei, Zheng., Yuefei, Ji., Jinfeng, Zhang., Chao, Zeng., Ya, Zhang., Qi, Wang., & Xi, Yang., (2013). “Ferrous-activated persulfate oxidation of arsenic (III) and diuron in aquatic system”. Journal of hazardous materials. Vol. 263, Pages 422-430. DOI: 10.1016/j.jhazmat.2013.09.056
36. Mahdi-Ahmed, M., Chiron, S., (2014). “Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater”. Journal of hazardous materials. Vol. 265, Pages. 41-46. doi.org/10.1016/j.jhazmat.2013.11.034
37. Epold, I., Trapido, M., & Dulova, N., (2015). “Degradation of levofloxacin in aqueous solutions by Fenton, ferrous ion-activated persulfate and combined Fenton/persulfate systems”. Chemical Engineering Journal. Vol. 279, 452-462. DOI. 10.1016/j.cej.2015.05.054
38. Xiaoxuan Jiang., Yanlin Wu., Peng Wang., Hongjing Li., & Wenbo Dong., (2013). “Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion”. Environmental Science and Pollution Research. Vol.20, Issue 7. Pages 4947-53.
39. Monteagudo, J., Durán, A., González, R., & Expósito, A., (2015). “In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2”. Applied Catalysis B: Environmental. Vol.176-177, Pages 120-129. doi.org/10.1016/j.apcatb.2015.03.055
40. Khan, JA., He, X., Khan, HM., Shah, NS., & Dionysiou, DD., (2013). “Oxidative degradation of atrazine in aqueous solution by UV/H 2 O 2/Fe 2+, UV//Fe 2+ and UV//Fe 2+ processes: A comparative study”. Chemical Engineering Journal. 218. Pages 376-83.
10.1016/j.cej.2012.12.055
41. Bazinet, RP., Rao, JS., Chang, L., Rapoport, SI., & Lee, H-J., (2006). “Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder”. Biological psychiatry. Vol.59 , Issue 5. Pages 401-407.
42. Romero, A., Santos, A., Vicente, F., & González, C., (2010). “Diuron abatement using activated persulphate: effect of pH, Fe (II) and oxidant dosage”. Chemical Engineering Journal. Vol. 162, Issue 1. Pages 257-265.
43. Al-Shamsi, MA., Thomson, NR., (2013). “Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron”. Industrial & Engineering Chemistry Research. Vol. 52, Issue 38. Pages 13564-13571.
44. Liu, W., Jin, L., Xu, J., Liu, J., Li, Y., & Zhou, P., (2019). “Insight into pH dependent Cr (VI) removal with magnetic Fe3S4”. Chemical Engineering Journal. Vol. 359, Pages 564-71.
45. Saeid, S., Behnajady, MA., (2015) “Photooxidative Removal of Phenazopyridine by UV/H2O2 Process in a Batch Re-circulated Annular Photoreactor: Influence of Operational Parameters”. Oriental Journal of Chemistry. Vol 31, Issue 2.
46. Byung-Hyun, Moon., Young-Bae, Park., & Kyung-Hun Park., (2011). “Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron”. Desalination. Vol. 268, (1-3). Pages 52-249.
47. Haoran Dong., Qi He., Guangming Zeng., Lin Tang., Lihua Zhang., Yankai Xie., Yalan Zeng., & Feng Zhao., (2017). “Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA”. Chemical Engineering Journal. Vol. 316, Pages 410-418. doi.org/10.1016/j.cej.2017.01.118