Manuscript ID : BIOLOGY-2304-1171 (R1)
Visit : 198
Page: 14 - 26
https://doi.org/10.71829/BIOLOGY-2024-3041171
Article Type:
Original Research
Subject Areas :
Genetics
فاطمه آخوندی قشه توتی
1
,
محمد هادی سخاوتی
2
,
مجتبی طهمورث پور
3
1 - دانشجوی کارشناسیارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2 - دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
3 - استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
Received: 2023-04-30
Accepted : 2023-10-28
Published : 2023-12-22
Keywords:
References:
Chauhan, A.S., Badle, S.S., Ramachandran, K.B. and G, Jayaraman. 2014. The P170 expression system enhances hyaluronan molecular weight and production in metabolically-engineered Lactococcus lactis. Biochemical engineering journal. 90: 73-78.
Guzmán-Rodríguez, J.J., López-Gómez, R., Suárez-Rodríguez, L.M., Salgado-Garciglia, R., Rodríguez-Zapata, L.C., Ochoa-Zarzosa, A. and J.E, López-Meza. 2013. Antibacterial activity of defensin PaDef from avocado fruit (Persea americana var. drymifolia) expressed in endothelial cells against Escherichia coli and Staphylococcus aureus. BioMed Research International.
Hancock, R.E. and H.G, Sahl. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature biotechnology. 24(12): 1551-1557.
Ingham, A.B. and R.J, Moore. 2007. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnology and applied biochemistry. 47(1): 1-9.
Jørgensen, C.M., Vrang, A. and S.M, Madsen. 2014. Recombinant protein expression in Lactococcus lactis using the P170 expression system. FEMS microbiology letters. 351(2): 170-178.
Magana, M., Pushpanathan, M., Santos, A.L., Leanse, L., Fernandez, M., Ioannidis, A. and G.P, Tegos. 2020. The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases. 20(9): e216-e230.
Mahlapuu, M., Håkansson, J., Ringstad, L. and C, Björn. 2016. Antimicrobial peptides: an emerging category of therapeutic agents. Frontiers in cellular and infection microbiology. 6:194.
Mousavi, Z., Rashidian, Z., Zeraatpisheh, Y. and A, Javadmanesh. 2022. Molecular docking of bacteriocin enterocin P peptide with mastitis-causing E. coli antigen in cattle. Veterinary Research and Biological Products. 35(4): 114-122.
Noonan, J., Williams, W.P. and X, Shan. 2017. Investigation of antimicrobial peptide genes associated with fungus and insect resistance in maize. International Journal of Molecular 18(9): 1938.
Olga, K., Marina, K., Alexey, A., Anton, S., Vladimir, Z. and T, Igor. 2020. The role of plant antimicrobial peptides (AMPs) in response to biotic and abiotic environmental factors. Biological Communications. 65(2): 187-199.
Parisi, K., Shafee, T.M., Quimbar, P., Van der Weerden, N.L., Bleackley, M.R. and M.A, Anderson. 2019. The evolution, function and mechanisms of action for plant defensins. In Seminars in cell and developmental biology, Academic Press. pp. 107-118.
Rodríguez-Decuadro, S., Dans, P.D., Borba, M.A., Benko-Iseppon, A.M. and G, Cecchetto. 2019. Gene isolation and structural characterization of a legume tree defensin with a broad spectrum of antimicrobial activity. Planta, 250(5): 1757-1772.
Soto, N., Hernández, Y., Delgado, C., Rosabal, Y., Ortiz, R., Valencia, L. and G.A, Enríquez. 2020. Field resistance to Phakopsora pachyrhizi and Colletotrichum truncatum of transgenic soybean expressing the NmDef02 plant defensin gene. Frontiers in Plant Science. 11: 562.
Wang, M., Odom, T. and J, Cai. 2020. Challenges in the development of next-generation antibiotics: Opportunities of small molecules mimicking mode of action of host-defense peptides. Expert Opinion on Therapeutic Patents. 30(5): 303-305.