Designed a Fluorescent Method by Using PbS with Gelatin via Quantum Dots for the Determination of Phenylpropanolamine Drug in Human Fluid Samples
Subject Areas : PolymerShirin Bouroumand 1 , Farzaneh Marahel 2 , Fereydoon Khazali 3
1 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
2 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
3 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
Keywords: Fluorescence, Quantum Dots, Phenylpropanolamine (PPA) drug, PbS with Gelatin Synthesis,
Abstract :
[1]. S. Tanreh, A. Shameli, E. Balali, J. Appl. Chem. Res., 12, 79 (2018).
[2]. J. N. Kim, J. E. Cho, J. Toxicol. Environ. Health A., 84, 529 (2021).
[3]. N. A. Flavahan, J. Pharmacol. Experim. Therape., 313, 432 (2005).
[4]. R. Bruckner, I. Hackbarth, T. Meinertz, B. Schmelzle, H. Scholz, Naunyn-Schmiedeberg's
Archives of Pharmacology., 303, 205 (1978).
[5]. British Pharmacopoeia. The stationery office, electronic version. London., 305, 1227 (2013).
[6]. A.L. Suryan, V.K. Bhusari, K.S. Rasal, S.R. Dhaneshwar, Int. J. Pharm. Sci. Drug. Res., 3, 303
(2011).
[7]. E.E. Balint, G. Falkay, G.A. Balint, Khat - A controversial plant. Wien Klin Wochenschr., 121,
604 (2009).
[8]. S. Azhagvuel, R. Sekar, J. Pharm. Biomed. Anal., 43, 873 (2007).
[9]. P. Vinas, C. Lopez‑Erroz, F.J. Hernandez‑Cordoba, Talanta., 47, 455 (1998).
[10]. K. Abbasia, M.I. Bhangera, M.Y. Khuhawar, J. Pharm. Biomed. Anal., 41, 998 (2006).
[11]. K. Sunil, K. Yogesh, K. Abhijeet, Int. J. Pharm. Life Sci., 4, 3122 (2013).
[12]. M.I. Walash, N. El‑Enany, S. Saad, Int. J. Biomed. Sci., 6, 150 (2010).
[13]. A. Hatamie, F. Marahel, A. Sharifat, Talanta., 176, 518 (2018).
[14]. Z. Qiu, J. Shu, Y. He, Z. Lin, K. Zhang, S. Lv, D. Tang, Biosens. Bioelectron., 87, 18 (2017).
[15]. G.H. Kim, D.H. Cha, R.M. Nepal, T.C. Jeong, J. Toxicol. Environ. Health A., 84, 783 (2021).
[16]. Sh. Lv, Y. Tang, K. Zhang, D. Tang, Anal. Chem., 90, 14121 (2018).
[17]. A. Dos, M. Wai, Ultrasonic Sonochemistry., 21, 892 (2014).
[18]. Z. Lin, Sh. Lv, K. Zhang, D. Tang, J. Mater. Chem. B., 5, 826 (2017).
[19]. Sh. Bouroumand, F. Marahel, F. Khazali, Iran. J. Anal. Chem., 7, 47 (2020).
[20]. Q. Zhou, Y. Lin, M. Xu, Z. Gao, H. Yang, D. Tang, Anal. Chem., 88, 8886 (2016).
[21]. E.G. Martyanova, S.B. Brichkin, M.G. Spirin, V.F. Razumov, High Energy Chem., 51, 350
(2017).
[22]. A. Shokry, M. Khalil, H. Ibrahim, M. Soliman, S. Ebrahim, Scientiic Reports., 11, 5336
(2021).
[23]. F. Marahel, L. Niknam, Drug. Chem. Toxicol., 44, 1 (2021).
[24]. Z. Qiu, J. Shu, D. Tang, Anal. Chem., 89, 5152 (2017).
[25]. P. Dutta, D. Saikia, N.C. Adhikary, N.S. Sarma, ACS. Appl. Mater. Interfaces., 7, 24778
(2015).
[26]. M. Mirsalari, S. Elhami, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 240, 118617 (2020).
[27]. X. Yang, M. Liu, Y. Yin, F. Tang, H. Xu, X. Liao, Sensors, 18, 964 (2018).
[28]. L. Niknam, F. Marahel, J. Phys. Theor. Chem., 18, 37 (2021).
[29]. C. Coester, K. Langer, H. Brisen, J. Kruter, J. Micro. Encapsul., 17, 187 (2000).
[30]. H.R. Akbari Hasanjani, M.R. Sohrabi, Iran. J. Pharma. Res., 16, 478 (2017).
[31]. A. Ramzannezad, A. Hayati, A. Bahari, H. Najafi-Ashtiani, Iran. J. Basic Med. Sci., 24, 962
(2021).
[32]. Sh. Bouroumand, F. Marahel, F. Khazali, Desal. Water Treat., 223, 388 (2021).
[33]. T.S. Shyju, S. Anandhi, R. Sivakumar, R. Gopalakrishnan, Int. J. Nano. Sci., 13, 1450001
(2014).
[34]. Y. Zhao, J. Zou, W. Shi, Mater. Sci. Eng. J., 121, 20 (2005).
[35]. S. Baluta, K. Malecha, A. Swist, J. Cabaj, Sensors, 20, 1429 (2020).
[36]. N. Samadi, S. Narimani, Sensor Lett. J., 14, 530 (2016).
[37]. S.S. Liang, L. Qi, R.L. Zhang, M. Jin, Z.Q. Zhang, Sens. Actuators, 244, 585 (2017).
[38]. E. Keskin, S. Allahverdiyeva, E. Şeyho, Y. Yardim, J. Serb. Chem. Soc., 84, 1 (2019).
[39]. H. Xie, F. Zeng, S. Wu, Biomacromolecules, 15, 3383 (2014).
[40]. S. Baluta, A. Swist, J. Cabaj, K. Malecha, Int. J. Electron. Telecommunica., 66, 369 (2020).