Design and Simulation of Voltage Controlled Plasmonic 4*1 Switch Based on Graphene Ribbons
Subject Areas : Electronics EngineeringTohid Kalantari 1 , Mahdi Zavvari 2
1 - Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2 - Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Keywords: Graphene. Gate-Controlled, plasmonics, Optical switch,
Abstract :
In this paper, a novel plasmonic optical switch based on graphene is designed and simulated with better features and four channels. Each of these channels has an equal width of 20nm which constructed from graphene ribbons spaced at a distance of 30nm from each other. The operation of device is based on the modulation of graphene chemical potential in each channel by using applied voltage. This means that by application of a proper voltage the transmission of input in every channel can be controlled and hence the switching can be occurred. Performance characteristics of this optical switch achieves a relatively high transmission with very low loss at the frequency of 30THz. Also in this structure the amount of crosstalk is remarkably low. This structure has been investigated in different chemical potentials in which one of it’s best status occurs in chemical potential of 0.4eV. All analyses and simulations have been performed in Lumerical and MATLAB.
[1] W. Park, "Optical interactions in plasmonic nanostructures," Nano Converg., vol. 1, no.2, pp. 1-27, 2013, doi:10.1186/s40580-014-0002-x.
[2] R. G. H. Aryanfard, "Nanoscale plasmonic filter based on coupled metal-insulator-metal waveguides using nonlinear nanoslot resonator," J. Nanophoton., vol. 9, no.1, pp. 093799-1-093799-7, 2015, doi:10.1117/1.JNP.9.093799.
[3] Y. G. X. Zeng, H. Hu, D. Ji, Q. Gan, F. Bartoli, "A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing," J. Appl. Phys., vol. 113, no.13, p. 133102, 2013, doi:10.1063/1.4798942.
[4] J. Y. H. Wang, J. Zhang, J. Huang, W. Wu, D. Chen, G. Xiao, "Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure," Opt. Lett., vol. 41,no.6, pp. 1233-1236, 2016, doi:10.1364/OL.41.001233.
[5] K. L. Y. Gong, J. Huang, N. J. Copner, A. Davies, L. Wang, T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, vol. 124, pp. 511-525, 2012, doi:10.2528/PIER11121903.
[6] V. A. D. Abergel, J. Berashevich, K. Ziegler, T. Chakraborty "Properties of graphene: a theoretical perspective," Advances in Physics, vol. 59, no.4, pp. 261-482, 2010, doi:10.1080/00018732.2010.487978.
[7] A. K. P. Karimi Khozani, "Analytic calculation of dispersion curve in graphene-based one dimensional periodic structures," J. Appl. Electromag., vol. 4, pp. 39-46, 2015 (In Persian).
[8] F. Abajo, "Graphene Plasmonics: Challenges and Opportunities," ACS Photonics, vol. 1, no.3, pp. 135-152, 2014, doi:10.1021/ph400147y.
[9] P. A. T. Low, "Graphene Plasmonics for Terahertz to Mid-Infrared Applications," ACS Nano, vol. 8, no.2, pp. 1086-1101, 2014, doi:10.1021/nn406627u.
[10] N. E. A. Davoyan, "Electrically controlled one-way photon flow in plasmonic nanostructures," Nature Communications, vol. 5,no.5250, 2014, doi:10.1038/ncomms6250.
[11] J. P.-C. J. S. Gómez-Díaz, "Graphene-based plasmonic switches at near infrared frequencies," Opt. Express, vol. 21, no.13, pp. 15490-15504, 2013, doi:10.1364/OE.21.015490.
[12] C. H. G. C. Hong-Son, "Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays," Appl. Phys. Lett., vol. 102, no.23, 2013, doi:10.1063/1.4810003.
[13] R. S. R. Emadi, A. Zeidaabadi Nezhad, R. Emadi, "Analysis and design of graphene-based surface plasmon waveguide switch at long-wavelength infrared frequencies," IEEE Sel. Top. Quant. Electron., vol. 23, no.5, pp. 1-9, 2017, doi:10.1109/JSTQE.2017.2660881.
[14] X. P. X. Bana, X. Li, B. Hu, Y. Guo, H. Zheng, "A nonlinear plasmonic waveguide based all-optical bidirectional switching," Opt. Commun., vol. 406, pp. 124-127, 2018,doi:10.1016/j.optcom.2017.06.040.
[15] M. R. E. A. Ebrahimzadeh, "Analysis of Wall Structure Effects on Indoor Wireless Channel Parameters Using the FDTD Method," J. Appl. Electromag., vol. 4, pp. 27-35, 2016 (In Persian).
[16] A. M. J. Shiri, "EIT-Based Graphene Nanostructure Detectors for Detecting Materials Using Terahertz Waves," J. Appl. Electromag., vol. 6, pp. 41-48, 2018 (In Persian).
[17] M. K. M.-F. M. Yarahmadi, Leila Yousefi, "Subwavelength graphene-based plasmonic THz switches and logic gates," IEEE Trans. Terahertz Sci. Tech., vol. 5, no.5, pp. 725-731, 2015, doi: 10.1109/TTHZ.2015.2459674.
[18] M. K. M.-F. M. Yarahmadi, L. Yousefi, "Compact low power graphene-based Y-branch THz switch," Third Conference on Millimeter-Wave and Terahertz Technologies (MMWATT), 2014, pp. 1-3, doi: 10.1109/MMWaTT.2014.7057191.
[19] H. A.-B. M. Taleb Hesami, M. Zavvari, "A high efficiency optical power splitter in a y-branch photonic crystal for DWDM optical communication systems," Frequenz, vol. 72, no.1-2, pp. 79-84, 2017, doi:10.1515/freq-2016-0265.
[20] M. Derakhshi, D. Fath, "Terahertz plasmonic switch based on periodic array ofgraphene/silicon," Scientia Iranica F, Vol. 24, no.6, pp.3452-3457, 2017, doi:10.24200/SCI.2017.4423.
[21] H.-J. Li, L.-L. Wang, Z.-R. Huang, B. Sun, and X. Zhai, "Tunable mid-infrared plasmonic anti-symmetric coupling resonator based on the parallel interlaced graphene pair," Plasmonics, vol. 10, pp. 39-44, 2015,doi:10.1007/s11468-014-9774-4
_||_[1] W. Park, "Optical interactions in plasmonic nanostructures," Nano Converg., vol. 1, no.2, pp. 1-27, 2013, doi:10.1186/s40580-014-0002-x.
[2] R. G. H. Aryanfard, "Nanoscale plasmonic filter based on coupled metal-insulator-metal waveguides using nonlinear nanoslot resonator," J. Nanophoton., vol. 9, no.1, pp. 093799-1-093799-7, 2015, doi:10.1117/1.JNP.9.093799.
[3] Y. G. X. Zeng, H. Hu, D. Ji, Q. Gan, F. Bartoli, "A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing," J. Appl. Phys., vol. 113, no.13, p. 133102, 2013, doi:10.1063/1.4798942.
[4] J. Y. H. Wang, J. Zhang, J. Huang, W. Wu, D. Chen, G. Xiao, "Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure," Opt. Lett., vol. 41,no.6, pp. 1233-1236, 2016, doi:10.1364/OL.41.001233.
[5] K. L. Y. Gong, J. Huang, N. J. Copner, A. Davies, L. Wang, T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, vol. 124, pp. 511-525, 2012, doi:10.2528/PIER11121903.
[6] V. A. D. Abergel, J. Berashevich, K. Ziegler, T. Chakraborty "Properties of graphene: a theoretical perspective," Advances in Physics, vol. 59, no.4, pp. 261-482, 2010, doi:10.1080/00018732.2010.487978.
[7] A. K. P. Karimi Khozani, "Analytic calculation of dispersion curve in graphene-based one dimensional periodic structures," J. Appl. Electromag., vol. 4, pp. 39-46, 2015 (In Persian).
[8] F. Abajo, "Graphene Plasmonics: Challenges and Opportunities," ACS Photonics, vol. 1, no.3, pp. 135-152, 2014, doi:10.1021/ph400147y.
[9] P. A. T. Low, "Graphene Plasmonics for Terahertz to Mid-Infrared Applications," ACS Nano, vol. 8, no.2, pp. 1086-1101, 2014, doi:10.1021/nn406627u.
[10] N. E. A. Davoyan, "Electrically controlled one-way photon flow in plasmonic nanostructures," Nature Communications, vol. 5,no.5250, 2014, doi:10.1038/ncomms6250.
[11] J. P.-C. J. S. Gómez-Díaz, "Graphene-based plasmonic switches at near infrared frequencies," Opt. Express, vol. 21, no.13, pp. 15490-15504, 2013, doi:10.1364/OE.21.015490.
[12] C. H. G. C. Hong-Son, "Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays," Appl. Phys. Lett., vol. 102, no.23, 2013, doi:10.1063/1.4810003.
[13] R. S. R. Emadi, A. Zeidaabadi Nezhad, R. Emadi, "Analysis and design of graphene-based surface plasmon waveguide switch at long-wavelength infrared frequencies," IEEE Sel. Top. Quant. Electron., vol. 23, no.5, pp. 1-9, 2017, doi:10.1109/JSTQE.2017.2660881.
[14] X. P. X. Bana, X. Li, B. Hu, Y. Guo, H. Zheng, "A nonlinear plasmonic waveguide based all-optical bidirectional switching," Opt. Commun., vol. 406, pp. 124-127, 2018,doi:10.1016/j.optcom.2017.06.040.
[15] M. R. E. A. Ebrahimzadeh, "Analysis of Wall Structure Effects on Indoor Wireless Channel Parameters Using the FDTD Method," J. Appl. Electromag., vol. 4, pp. 27-35, 2016 (In Persian).
[16] A. M. J. Shiri, "EIT-Based Graphene Nanostructure Detectors for Detecting Materials Using Terahertz Waves," J. Appl. Electromag., vol. 6, pp. 41-48, 2018 (In Persian).
[17] M. K. M.-F. M. Yarahmadi, Leila Yousefi, "Subwavelength graphene-based plasmonic THz switches and logic gates," IEEE Trans. Terahertz Sci. Tech., vol. 5, no.5, pp. 725-731, 2015, doi: 10.1109/TTHZ.2015.2459674.
[18] M. K. M.-F. M. Yarahmadi, L. Yousefi, "Compact low power graphene-based Y-branch THz switch," Third Conference on Millimeter-Wave and Terahertz Technologies (MMWATT), 2014, pp. 1-3, doi: 10.1109/MMWaTT.2014.7057191.
[19] H. A.-B. M. Taleb Hesami, M. Zavvari, "A high efficiency optical power splitter in a y-branch photonic crystal for DWDM optical communication systems," Frequenz, vol. 72, no.1-2, pp. 79-84, 2017, doi:10.1515/freq-2016-0265.
[20] M. Derakhshi, D. Fath, "Terahertz plasmonic switch based on periodic array ofgraphene/silicon," Scientia Iranica F, Vol. 24, no.6, pp.3452-3457, 2017, doi:10.24200/SCI.2017.4423.
[21] H.-J. Li, L.-L. Wang, Z.-R. Huang, B. Sun, and X. Zhai, "Tunable mid-infrared plasmonic anti-symmetric coupling resonator based on the parallel interlaced graphene pair," Plasmonics, vol. 10, pp. 39-44, 2015,doi:10.1007/s11468-014-9774-4