Magnetic-Electric Dipole Antenna with Circular Polarization Feature and Directional Pattern with Improved Bandwidth
Subject Areas : Electronics EngineeringSeied Ali Banihashem 1 , Pejman Mohammadi 2 , Yashar Zehforoosh 3
1 - Department of Electrical Engineering, Urima Branch, Islamic Azad University, Urmia Iran
2 - Microwave and antenna research center, Urmia Branch, Islamic Azad University, Urmia, Iran
3 - Microwave and antenna research center, Urmia Branch, Islamic Azad University, Urmia, Iran
Keywords: antenna, circular polarization, dipole, directional,
Abstract :
This paper introduces a new and compact structure of a directional antenna consisting of an electric dipole and a truncated connection element. This antenna is fed by a Γ shaped power line. Wide impedance bandwidth in the frequency range of 1.3 GHz to 3 GHz will be observed in the output performance of this antenna. Base radiation patterns with high main loop and low side and back loop level are other features of the introduced antenna. The antenna design process is step-by-step and parametric based on the important parameters of antenna geometry. The main feature of the antenna is the realization of circular polarization at a high percentage of implicational bandwidth. The radiation patterns of orthogonal plates E & H along with left and right circular polarization patterns for the desired antenna have been extracted and analyzed. As predicted, there are many similarities between the E and H plane pattern, which indicates the accuracy of the design process. Is. The maximum total gain of the antenna in the designed frequency band is about 10 dBi..
[1] P. Mohammadi, M. H. Rezvani and T. Siahy, “A circularly polarized wide-band magneto-electric dipole antenna with simple structure for BTS applications,” AEU - International Journal of Electronics and Communications, vol. 105, pp. 92-97, 2019, doi: 10.1016/j.aeue.2019.04.008.
[2] A. Baba, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation,” Electron. Lett., vol. 52, no. 4, pp. 266–268, 2019, doi: 10.1049/el.2015.2694.
[3] R. M. Hashmi, B. A. Zeb, and K. P. Esselle, “Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2970–2977, June 2021, doi: 10.1109/TAP.2021.2314534.
[4] R. M. Hashmi and K. P. Esselle, “A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 830–835, Feb. 2019, doi:10.1109/ACCESS.2019.2782749.
[5] N. Wang, J. Li, G. Wei, L. Talbi, Q. Zeng, and J. Xu, “Wideband fabry perot resonator antenna with two layers of dielectric superstrates,” IEEE Antennas and Wireless Propag. Lett., vol. 14, pp. 229–232, 2021, doi: 10.1109/LAWP.2021.2360703.
[6] Y. Ge, Z. Sun, Z. Chen, and Y. Y. Chen, “A high-gain wideband low-profile fabry-perot resonator antenna with a conical short horn,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1889–1892, 2021,doi:10.1109/APUSNCURSINRSM.2021.8072430.
[7] B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC antennas : C-band point-to-point communication systems,” IEEE Antennas Propag. Mag.,vol. 58, no. 1, pp. 56–64, Feb. 2019, doi:10.1109/TMTT.2019.2830396.
[8] F. Wu and K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified, second-order cavity,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112–2116, April 2019, doi:10.1109/ACCESS.2019.2782749.
[9] A. Baba, R. M. Hashmi, and K. P. Esselle, “Achieving a large gain-bandwidth product from a compact antenna,” IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3437–3446, July 2019, doi:10.1109/ACCESS.2019.2953861.
[10] M. Kovaleva, D. Bulger, B. A. Zeb, and K. P. Esselle, “Cross-entropy method for electromagnetic optimization with constraints and mixed variables,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5532–5540, Oct. 2017. doi: 10.1109/TAP.2017.2740974.
[11] M. Khalily, R. Tafazolli, P. Xiao, and A. A. Kishk, “Broadband mm- wave microstrip array antenna with improved radiation characteristics for different 5G applications,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4641–4647, Sep. 2018, doi: 10.1109/TAP.2018.2845451.
[12] H. Xu, J. Zhou, K. Zhou, Q. Wu, Z. Yu, and W. Hong, “Planar wide- band circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5170–5179, Oct. 2018, doi: 10.1109/TAP.2018.2862345.
[13] F. Wu and K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified, second-order cavity,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112–2116, April 2017, doi: 10.1109/ACCESS.2017.2782749.
[14] Y. Zhang, W. Hong, and R. Mittra, “45 GHz wideband circularly polarized planar antenna array using inclined slots in modified short-circuited SIW,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1669–1680,Mar. 2019, doi:10.1155/2021/9955502.
[15] L. Zhang et al., “Wideband high-efficiency circularly polarized SIW-fed S-dipole array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 2422–2427, Mar. 2020, doi:10.1109/LAWP.2021.3092139.
[16] J. Xu, W. Hong, Z. H. Jiang, H. Zhang, and K. Wu, “Low-profile wide- band vertically folded slotted circular patch array for K a-band applica- tions,” IEEE Trans. Antennas Propag., vol. 68, no. 9, pp. 6844–6849, Sep. 2020, doi: 10.1109/ACCESS.2021.3075495.
[17] S. Sedghi, , S. Shafei, A. Kalami and T. Aribi, “Small Monopole Antenna for IEEE 802.11a and X-Bands Applications Using Modified CBP Structure,” Wireless Pers Commun ,vol.80, pp.859–865 , 2015, doi: 10.1007/s11277-014-2045-z.
[18] T. Li and Z. N. Chen, “Wideband sidelobe-level reduced K a-band meta surface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1356–1365, Mar. 2020, doi: 10.1109/TAP.2019.2948492.
[19] J. Yin, Q. Wu, C. Yu, H. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter- wave applications,” IEEE Trans. Antennas Propag., vol. 67, no. 7,pp. 4474–4483, Jul. 2019, doi: 10.1002/ett.4426.
[20] F. Heidari, Z. Adelpoure and N. Parhizgar, “Simulation of Leaky Wave Antenna with Cosecant Squared Pattern Using Genetic Algorithm,” Journal communication Engineering, vol.11, no. 42, pp. 69-76, 2022 (in persian).
[21] G.-H. Sun and H. Wong, “A planar millimeter-wave antenna array with a pillbox-distributed network,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3664–3672, May 2020, doi: 10.1155/2021/2286011.
[22] T.aribi, T.Sedghi and R. K. Mohammad Lou, “Multi-band compact MIMO Antenna for new generations of mobile applications & IoT,” Journal of Communication Engineering, vol.12, no.45, pp. 20-27,2022(in persian).
[23] D.L. Wen, D. Z. Zheng and Q.X. Chu, “A wideband differentially fed dual-polarized antenna with stable radiation pattern forbase stations,”IEEE Trans Antennas Propag, vol.65, pp.2248-2255, 2017, doi:10.21203/rs.3.rs-327641/v1.
[24] D. Ni, S .Yang, Y. Chen and Z. Song, “Extremely low-profile wideband dual-polarized microstrip antenna for micro-base-station applications,” Int J RF Microw C E. , vol.27, pp.1-8, 2017,doi: 10.1109/TAP.2017.888398.
[25] M. Rezvani and P. Mohammadi, “A dual-polarized reflector antenna with λ/2 printed dipoles for femtocell applications,” J Instrum, vol.14, p.02004, 2019, doi: 10.21203/rs.3.rs-268254/v1.
_||_
[1] P. Mohammadi, M. H. Rezvani and T. Siahy, “A circularly polarized wide-band magneto-electric dipole antenna with simple structure for BTS applications,” AEU - International Journal of Electronics and Communications, vol. 105, pp. 92-97, 2019, doi: 10.1016/j.aeue.2019.04.008.
[2] A. Baba, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation,” Electron. Lett., vol. 52, no. 4, pp. 266–268, 2019, doi: 10.1049/el.2015.2694.
[3] R. M. Hashmi, B. A. Zeb, and K. P. Esselle, “Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2970–2977, June 2021, doi: 10.1109/TAP.2021.2314534.
[4] R. M. Hashmi and K. P. Esselle, “A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 830–835, Feb. 2019, doi:10.1109/ACCESS.2019.2782749.
[5] N. Wang, J. Li, G. Wei, L. Talbi, Q. Zeng, and J. Xu, “Wideband fabry perot resonator antenna with two layers of dielectric superstrates,” IEEE Antennas and Wireless Propag. Lett., vol. 14, pp. 229–232, 2021, doi: 10.1109/LAWP.2021.2360703.
[6] Y. Ge, Z. Sun, Z. Chen, and Y. Y. Chen, “A high-gain wideband low-profile fabry-perot resonator antenna with a conical short horn,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1889–1892, 2021,doi:10.1109/APUSNCURSINRSM.2021.8072430.
[7] B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC antennas : C-band point-to-point communication systems,” IEEE Antennas Propag. Mag.,vol. 58, no. 1, pp. 56–64, Feb. 2019, doi:10.1109/TMTT.2019.2830396.
[8] F. Wu and K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified, second-order cavity,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112–2116, April 2019, doi:10.1109/ACCESS.2019.2782749.
[9] A. Baba, R. M. Hashmi, and K. P. Esselle, “Achieving a large gain-bandwidth product from a compact antenna,” IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3437–3446, July 2019, doi:10.1109/ACCESS.2019.2953861.
[10] M. Kovaleva, D. Bulger, B. A. Zeb, and K. P. Esselle, “Cross-entropy method for electromagnetic optimization with constraints and mixed variables,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5532–5540, Oct. 2017. doi: 10.1109/TAP.2017.2740974.
[11] M. Khalily, R. Tafazolli, P. Xiao, and A. A. Kishk, “Broadband mm- wave microstrip array antenna with improved radiation characteristics for different 5G applications,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4641–4647, Sep. 2018, doi: 10.1109/TAP.2018.2845451.
[12] H. Xu, J. Zhou, K. Zhou, Q. Wu, Z. Yu, and W. Hong, “Planar wide- band circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5170–5179, Oct. 2018, doi: 10.1109/TAP.2018.2862345.
[13] F. Wu and K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified, second-order cavity,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112–2116, April 2017, doi: 10.1109/ACCESS.2017.2782749.
[14] Y. Zhang, W. Hong, and R. Mittra, “45 GHz wideband circularly polarized planar antenna array using inclined slots in modified short-circuited SIW,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1669–1680,Mar. 2019, doi:10.1155/2021/9955502.
[15] L. Zhang et al., “Wideband high-efficiency circularly polarized SIW-fed S-dipole array for millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 2422–2427, Mar. 2020, doi:10.1109/LAWP.2021.3092139.
[16] J. Xu, W. Hong, Z. H. Jiang, H. Zhang, and K. Wu, “Low-profile wide- band vertically folded slotted circular patch array for K a-band applica- tions,” IEEE Trans. Antennas Propag., vol. 68, no. 9, pp. 6844–6849, Sep. 2020, doi: 10.1109/ACCESS.2021.3075495.
[17] S. Sedghi, , S. Shafei, A. Kalami and T. Aribi, “Small Monopole Antenna for IEEE 802.11a and X-Bands Applications Using Modified CBP Structure,” Wireless Pers Commun ,vol.80, pp.859–865 , 2015, doi: 10.1007/s11277-014-2045-z.
[18] T. Li and Z. N. Chen, “Wideband sidelobe-level reduced K a-band meta surface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1356–1365, Mar. 2020, doi: 10.1109/TAP.2019.2948492.
[19] J. Yin, Q. Wu, C. Yu, H. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter- wave applications,” IEEE Trans. Antennas Propag., vol. 67, no. 7,pp. 4474–4483, Jul. 2019, doi: 10.1002/ett.4426.
[20] F. Heidari, Z. Adelpoure and N. Parhizgar, “Simulation of Leaky Wave Antenna with Cosecant Squared Pattern Using Genetic Algorithm,” Journal communication Engineering, vol.11, no. 42, pp. 69-76, 2022 (in persian).
[21] G.-H. Sun and H. Wong, “A planar millimeter-wave antenna array with a pillbox-distributed network,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3664–3672, May 2020, doi: 10.1155/2021/2286011.
[22] T.aribi, T.Sedghi and R. K. Mohammad Lou, “Multi-band compact MIMO Antenna for new generations of mobile applications & IoT,” Journal of Communication Engineering, vol.12, no.45, pp. 20-27,2022(in persian).
[23] D.L. Wen, D. Z. Zheng and Q.X. Chu, “A wideband differentially fed dual-polarized antenna with stable radiation pattern forbase stations,”IEEE Trans Antennas Propag, vol.65, pp.2248-2255, 2017, doi:10.21203/rs.3.rs-327641/v1.
[24] D. Ni, S .Yang, Y. Chen and Z. Song, “Extremely low-profile wideband dual-polarized microstrip antenna for micro-base-station applications,” Int J RF Microw C E. , vol.27, pp.1-8, 2017,doi: 10.1109/TAP.2017.888398.
[25] M. Rezvani and P. Mohammadi, “A dual-polarized reflector antenna with λ/2 printed dipoles for femtocell applications,” J Instrum, vol.14, p.02004, 2019, doi: 10.21203/rs.3.rs-268254/v1.