Pareto Optimal Design of Passive and Active Vehicle Suspension Models
Subject Areas : Mechanical EngineeringMohammadjavad Mahmoodabadi 1 , Seyed Mehdi Mortazavi Yazdi 2
1 - Sirjan University of Technology
2 - Sirjan University of Technology
Keywords:
Abstract :
[1] Karnopp, D., “Analytical Results for Optimum Actively Damped Suspension Under Random Excitation”, Journal of Acoustic Stress and Reliability in Design, Vol. 111, 1989, pp. 278-283.
[2] Sun, L., “Optimum Design of Road-Friendly Vehicle Suspension Systems Subjected to Rough Pavement Surfaces”, Applied Mathematical Modeling, Vol. 26, 2002, pp. 635-652.
[3] Sireteanu, T., Stoia, N., “Damping Optimization of Passive and Semi-Active Vehicle Suspension by Numerical Simulation”, Proceedings of the Romanian Academy Series A, Vol. 4, No. 2, 2003, pp. 121-127.
[4] Sun, L., Cai, X., and Yang, J., “Genetic Algorithm-Based Optimum Vehicle Suspension Design Using Minimum Dynamic Pavement Load as a Design Criterion”, Journal of Sound and Vibration, Vol. 301, 2007, pp. 18-27.
[5] [5] Y. Sam, J. Osman, M. Ghani, Sliding Mode Control Design for Active Suspension on a Half-Car Model, in Proceedings of Student Conference on Research and Development, Putrajaya, Malaysia, 2003, pp. 36-42.
[6] Cho, J., Jung, T., Kwon, S., and Joh, J., “Development of a Fuzzy Sky-Hook Algorithm for a Semi-Active ER Vehicle Suspension Using inverse Model”, in Proceeding of IEEE International Conference on Fuzzy Systems, Canada, 2006, pp. 1550-1556.
[7] Griffin, M., Parsons, K., and Whitham, E., “Vibration and Comfort IV”, Application of Experimental Results, Ergonomics, vol. 25, 1982, pp. 721-739.
[8] Rakheja, S., “Computer-Aided Dynamic Analysis and Optimal Design of Suspension System for Off-Road Tractors”, Ph. D. Thesis, Concordia University, Canada, 1985.
[9] Barak, P., “Magic Numbers in Design of Suspensions for Passenger Cars”, SAE Technical Paper 911921, 1991, pp. 53-88.
[10] Bouazara, M., “Etude Etanaslyse de la Suspension Active et Semi-Active Des Yehicules Routters”, Ph.D. Thesis, University Laval, Canada, 1997.
[11] Hrovat, D., “Optimal Active Suspensions for 3d Vehicle Models”, in Proceedings of American Control Conference, Vol. 2, 1991, pp. 1534-1541.
[12] Crolla, D. A., “Semi-Active Suspension control for a Full Vehicle model”, SAE Techincal Paper 911904, 1992, pp. 45-51.
[13] Bouazara, M., Richard, M. J., “An optimal Design Method to Control the Vibrations of Suspension for Passenger Cars”, in Proceeding of International Mechanical Engineering Congress and Exposition: The Winter Annual Meeting of ASME Atlanta, 1996, pp. 61-68.
[14] Bouazara, M., Richard, M. J., “An optimization Method Designed to Improve 3-D Vehicle Comfort and Road Holding Capability Through the Use of Active and Semi-Active Suspensions”, European Journal of Mechanics-A/Solids, Vol. 20, No. 3, 2001, pp. 509-520.
[15] Gündogdu, U., “Optimal Seat and Suspension Design for Quarter Car With Driver Model Using Genetic Algorithms”, International Journal of Industrial Ergonomics, Vol. 37, No. 4, 2007, pp. 327- 332.
[16] Alkhatib, R., NakhaieJazar, G., and Golnaraghi, M. F., “Optimal Design of Passive Linear Suspension Using Genetic Algorithm”, Journal of Sound and Vibration, Vol. 275, 2004, pp. 665-691.
[17] Coello Coello, C. A., Christiansen, A. D., “Multi Objective Optimization of Trusses Using Genetic Algorithms”, Computers and Structures, Vol. 75, 2000, pp. 647-660.
[18] Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont, G. B., “Evolutionary Algorithms for Solving Multi-Objective Problems”, New York, Kluwer Academic, 2002.
[19] Fonseca, C. M., Fleming, P. J., “Genetic Algorithms for Multi-Objective Optimization, in: Formulation”, Discussion and Generalization, in Proceedings of Fifth International Conference on Genetic Algorithms, 1993, pp. 416-42.
[20] Srinivas, N., Deb, K., “Multi-Objective Optimization Using Non-Dominated Sorting in Genetic Algorithms”, Evolutionary Computation, Vol. 2, No. 3, 1994, pp. 221-248.
[21] Bagheri, A., Mahmoodabadi, M. J., Rostami, H., and Kheiybari, S., “Pareto Optimization of a Two-Degree of Freedom Passive Linear Suspension Using a New Multi-Objective Genetic Algorithm”, International Journal of Engineering, Vol. 24, No. 3, 2011, pp. 291-299.
[22] Rajeswari, K., Lakshmi, P., “PSO optimized Fuzzy Logic Controller for Active Suspension System”, In Proceeding of International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, Kerala India, 2010, pp. 278-283.
[23] Nariman-zadeh, N., Salehpour, M., Jamali, A., and Haghgoo, E., “Pareto Optimization of a Five-Degree of Freedom Vehicle Vibration Model Using a Multi-Objective Uniform-Diversity Genetic Algorithm (MUGA)”, Engineering Applications of Artificial Intelligence, Vol. 23, 2010, pp. 543-551.
[24] Mahmoodabadi, V., Safaie, A. A., Bagheri, A., and Nariman-zadeh, N., “A Novel Combination of Particle Swarm Optimization and Genetic Algorithm for Pareto Optimal Design of a Five-Degree of Freedom Vehicle Vibration Model”, Applied Soft Computing, Vol. 13, No. 5, 2013, pp. 2577-2591.
[25] Sharifi, M., Shahriari, B., and Bagheri, A., “Optimization of Sliding Mode Control for a Vehicle Suspension System via Multi-Objective Genetic Algorithm with Uncertainty”, Journal of Basic and Applied Scientific Research, Vol. 2, No. 7, 2012, pp. 6724-6729.
[26] Vahidi, A. Eskandarian, A., “Predictive Time-Delay Control of Vehicle Suspensions”, Journal of Vibration and Control, Vol. 7, No.8, 2001, pp. 1195-1211.
[27] Baumal, A. E. Mcphee, V., and Calamai, P. H., “Application of Genetic Algorithms to the Design Optimization of an Active Vehicle Suspension System”, Computer Methods in Applied Mechanics and Engineering, Vol. 163, No. (1-4), 1998, pp. 87-94.
[28] Thoresson, M. J., Uys, P. E., Els, P. S., and Snyman, J. A., “Efficient Optimisation of a Vehicle Suspension system Using a Gradient-Based Approximation Method”, Part 1: Mathematical Modelling, Mathematical and Computer Modelling, Vol. 50, No. (9-10), (2009, pp. 1421-1436.
[29] Crews, J. H., Mattson, M. G., and Buckner, G. D., “Multi-Objective Control Optimization for Semi-Active Vehicle Suspensions”, Journal of Sound and Vibration, Vol. 330, No. 23, 2011, pp. 5502-5516.
[30] Guo, D. L., Hu, H.Y., and Yi, J. Q., “Neural Network Control for a Semi-Active Vehicle Suspension With a Magnetorheological Damper”, Journal of Vibration and Control, Vol. 10, No. 3, 2004, pp. 461-471.
[31] Eski, I., Yildirim, S., “Vibration control of Vehicle active Suspension System Using a New Robust Neural Network Control System”, Simulation Modelling Practice and Theory, Vol. 17, No. 5, 2009, pp. 778-793.
[32] Mao, X., Wang, Q., “Delay-Dependent Control Design for a Time-Delay Supercavitating Vehicle Model”, Journal of Vibration and Control, Vol. 17, No. 3, 2011, pp. 431-448.
[33] Nath, T., Kumar, S., “Quarter/Half/Full Car Models for Active Suspension (with PID controller)”, In Proceeding of International Conference on Recent Trends in Engineering and Technology, 2012, pp. 286-290.
[34] Fayyad, S. M., “Constructing Control System for Active Suspension System”, Contemporary Engineering Sciences, Vol. 5, No. 4, 2012, pp. 189-200.
[35] Yagiz, N., Sakman, L. E., “Robust Sliding Mode Control of a Full Vehicle Without Suspension Gap Loss”, Journal of Vibration and Control, Vol. 11, No. 11, 2005, pp. 1357-1374.
[36] Haiping, D., Nong, Z., and James, L., “Parameter-Dependent Input-Delayed Control of Uncertain Vehicle Suspensions”, Journal of Sound and Vibration, Vol. 317, No. (3-5), 2008, pp. 537-556.