Investigation of Mechanical Property and Microstructure of Nanocomposite AZ31/SiC Fabricated by Friction Stir Process
Subject Areas : Mechanical Engineeringahmad haghani 1 , Sayed Hassan Nourbakhsh 2 , Mehdi Jahangiri 3
1 - Department of Mechanics, Faculty of Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2 - Department of Mechanical Engineering,
University of Shahrekord, Shahrekord, Iran
3 - Department of Mechanical Engineering, Faculty of Engineering,
Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
Keywords:
Abstract :
[1] Mordike, B., L., Ebert, T., “Magnesium: Properties, applications, potential”, Journal of Materials Science and Engineering: A, Vol. 302, 2001, pp. 37-45.
[2] Darras, B., Kishta, E., “Submerged friction stir processing of AZ31 Magnesium alloy”, Journal of Materials & Design, Vol. 47, 2013, pp. 133-137.
[3] Pradeep, S., Pancholi, V., “Effect of microstructural inhomogeneity on superplastic behaviour of multipass friction stir processed aluminium alloy”, Journal of Materials Science and Engineering: A, Vol. 561, 2013, pp. 78-87.
[4] Ramesh, K., N., Pradeep, S., and Pancholi, V., “Multipass Friction-Stir Processing and its Effect on Mechanical Properties of Aluminum Alloy 5086”, Journal of Metallurgical and Materials Transaction A, Vol. 43, 2012, pp. 4311-4319.
[5] Venkateswarlu, G., Devaraju, D., Davidson, M., J., Kotiveerachari, B., and Tagore, G., “Effect of overlapping ratio on mechanical properties and formability of friction stir processed Mg AZ31B alloy”, Journal of Materials & Design, Vol. 45, 2013, pp. 480-486.
[6] Yuan, W., Mishra, R., S., “Grain size and texture effects on deformation behavior of AZ31 magnesium alloy”, Journal of Materials Science and Engineering: A, Vol. 558, 2012, pp. 716-724.
[7] Dolatkhah, A., Golbabaei, P., BesharatiGivi, M., K., and Molaiekiya, F., “Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing”, Journal of Materials & Design, Vol. 37, 2012, pp.458-464.
[8] Salehi, M., Saadatmand, M., and Aghazadeh Mohandesi, J., “Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing”, Journal of Transactions of Nonferrous Metals Society of China, Vol. 22, 2012, pp. 1055-1063.
[9] Choi, D. H., Kim, Y. I., Kim, D., and Jung, S. B., “Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4”, Journal of Transactions of Nonferrous Metals Society of China, Vol. 22, 2012, pp. 614-618.
[10] Mostafapour Asl, A., Khandani, S., T., “Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method”, Journal of Materials Science and Engineering: A, Vol. 559, 2013, pp. 549-557.
[11] Zahmatkesh, B., Enayati, M., H., “A novel approach for development of surface nanocomposite by friction stir processing”, Journal of Materials Science and Engineering: A, Vol. 527, 2010, pp. 6734-6740.
[12] Rejil, C., M., Dinaharan, I., Vijay, S., J., and Murugan, N., “Microstructure and sliding wear behavior of AA6360/(TiC+B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate”, Journal of Materials Science and Engineering: A, Vol. 552, 2012, pp. 336-344.
[13] Morisada, Y., Fujii, H., Nagaoka, T., and Fukusumi, M., “Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31”, Journal of Materials Science and Engineering: A, Vol. 433, 2006, pp. 50-54.
[14] Najafi, M., Nasiri, A., M., and Kokabi, A., H., “Microstructure and hardness of friction stir processed AZ31 with SiC”, International Journal of Modern Physics B, Vol. 22, 2008, pp. 2879-2885.
[15] Asadi, P., Faraji, G., and Besharati, M., K., “Producing of AZ91/SiC composite by friction stir processing (FSP)”, International Journal of Advanced Manufacturing Technology, Vol. 51, 2010, pp. 247-260.
[16] Asadi, P., Faraji, G., Masumi, A., and Besharati, M., K., “Experimental Investigation of Magnesium-Base Nanocomposite Produced by Friction Stir Processing: Effects of Particle Types and Number of Friction Stir Processing Passes”, Journal of Metallurgical and Materials Transaction A, Vol.42, 2011, pp. 2820-2832.
[17] Sun., K., Shi, Q., Y., Sun, Y., J., and Chen, G., Q., “Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing”, Journal of Materials Science and Engineering: A, Vol. 547, 2012, pp. 32-37.
[18] Hung, F. Y., Shih, C. C., Chen, L. H., and Lui, T. S., “Microstructures and high temperature mechanical properties of friction stirred AZ31–Mg alloy”, Journal of Alloys and Compounds, Vol. 428, 2007, pp. 106-114.
[19] Jiang, Y., Yang, X., Miura, H., and Sakai, T., “Nano-SiO2 Particles Reinforced Magnesium alloy produced by friction stir processing”, Journal of Review Advanced Material Science, Vol. 33, 2013, pp. 29-32.
[20] Ma, Z., Y., Sharma, S., R.,and Mishra, R., S., “Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum–silicon alloy”, Journal of Scripta Materialia, Vol. 54, 2006, pp. 1623-1626.
[21] Gandra, J., Miranda, R., M., and Vilaça, P., “Effect of overlapping direction in multipass friction stir processing”, Journal of Materials Science and Engineering: A, Vol. 528, 2011, pp. 5592-5599.
[22] Chang, C., I., Du, X., H., and Huang, J., C., “Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing”, Journal of Scripta Materialia, Vol. 57, 2007, pp. 209-212.
[23] Nascimento, F., Santos, T., Vilaça, P., Miranda, R., M., and Quintino, L., “Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys”, Journal of Materials Science and Engineering: A, Vol. 506, 2009, pp. 16-22.
[24] Liu, Z., Y., Xiao, B., L., Wang, W., G., and Ma, Z., Y., “Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing”, Journal of Carbon, Vol. 50, 2012, pp. 1843-1852.
[25] Morisada, Y., Fujii, H., Nagaoka, T., and Fukusumi, M., “MWCNTs/AZ31 surface composites fabricated by friction stir processing”, Journal of Materials Science and Engineering: A, Vol. 419, 2006, pp. 344-348.
[26] Izadi, H., Gerlich, A., P., “Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites”, Journal of Carbon, Vol. 50, 2012, pp. 4744-4749.
[27] Chawla, N., Shen, Y. L., “Mechanical Behavior of Particle Reinforced Metal Matrix Composites”, Journal of Advanced Engineering Materials, Vol. 3, 2001, pp. 357-370.