Determination of Material Properties Components used in FEM Modeling of Ultrasonic Piezoelectric Transducer
Subject Areas : advanced manufacturing technology
1 - Department of Mechanical Engineering,
University of Bu-Ali Sina, Iran
Keywords:
Abstract :
[1] Frederick, R., Ultrasonic Engineering, John Wiley and Sons, New York, USA, 1965.
[2] Kumar, S., Wu, C. S., Padhy, G. K., and Ding, W., Application of Ultrasonic Vibrations in Welding and Metal Processing: A Status Review, Journal of Manufacturing Processes, Vol. 26, 2017, pp. 295-322.
[3] Langevin, P., French Patent, Application No. FR575435D filed 27, December 1923.
[4] Mason, W. P., Electromechanical Transducers and Wave Filters, Van Nostrand, New York, USA, 1942.
[5] Krimholtz, R., Leedom, D. A., and Mattaei, G. L., New Equivalent Circuits for Elementary Piezoelectric Transducer, Electron, Vol. 6, 1970, pp. 398–399.
[6] Redwood, M., Experiments With the Electrical Analog of a Piezoelectric Transducer, Journal of the Acoustical Society of America, Vol. 36, No. 1, 1964, pp. 1872–1880.
[7] Al-Budairi, H., Lucas, M., and Harkness, P., A Design Approach for Longitudinal–Torsional Ultrasonic Transducers, Sensors and Actuators A: Physical, Vol. 198, 2013, pp. 99-106.
[8] Kagawa, Y., Yamabuchi, T., Finite Element Simulation of a Composite Piezoelectric Ultrasonic Transducer, IEEE Transactions on Sonics and Ultrasonics, Vol. 26, No. 2, 1979, pp. 81 – 87.
[9] Jian, S. W., Dale, F. O., A Finite Element-Electric Circuit Coupled Simulation Method for Piezoelectric Transducer, IEEE Ultrasonics Symposium, Caesars Tahoe, NV, USA, 1999, pp. 1105 – 1108.
[10] Cunningham, P. M., Use of the Finite Element Method in Ultrasonic Applications, Ultrasonic Industry Association Symposium, Ohio, USA, 2000.
[11] Kocbach, J., Finite Element Modeling of Ultrasonic Piezoelectric Transducers- Influence of Geometry and Material Parameters on Vibration, Response Functions and Radiated Field, Ph.D. dissertation, Department of Physics, University of Bergen, Bergen, 2000.
[12] Moreno, E., Acevedo, P.,. Fuentes, M., Sotomayor, A. Borroto, L., Villafuerte, M. E., and Leija, L., Design and Construction of a Bolt-Clamped Langevin Transducer, 2nd International Conference on Electrical and Electronics Engineering, Mexico City, Mexico, 2005, pp. 393 – 395.
[13] A. I. Fernando, M. Pappalardo, and J. Gallego, Finite Element Three-Dimensional Analysis of the Vibrational Behavior of the Langevin-Type Transducer, Ultrasonics, Vol. 40, 2002, pp. 513-517.
[14] Abdullah, A., Pak, A., Correct Prediction of the Vibration Behavior of a High Power Ultrasonic Transducer by FEM Simulation, The International Journal of Advanced Manufacturing Technology, Vol. 39, 2008, pp. 21–28.
[15] Abdullah, A., Pak, A., Abdullah, M. M, Shahidi, A., and Malaki, M., Study of the Behavior of Ultrasonic Piezo-Ceramic Actuators by Simulations, Electronic Materials Letters, Vol. 10, No. 1, 2014, pp. 37-42.
[16] Culp., D. R., Ultrasonic Resonator Design Using Finite Element Analysis, Available, 2002: http://www.krellengineering.com/fea/fea_info/fea_resonator_design.htm#FEA%20Procedure, [2002].
[17] Lundberg, B., Blanc, R. H., Determination of Mechanical Material Properties From the Two-Point Response of an Impacted Linearly Viscoelastic Rod Specimen, Journal of Sound and Vibration, Vol. 126, No. 1, 1988, pp. 97-108.
[18] Hillstrom, L., Mossberg, M., and Lundberg, B., Identification of Complex Modulus From Measured Strains on an Axially Impacted Bar Using Least Squares., Journal of Sound and Vibration, Vol. 230, No. 3, 2000, pp. 689-707.
[19] Mousavi, S., Nicolas, D. F., and Lundberg, B., Identification of Complex Moduli and Poisson's ratio From Measured Strains on an Impacted Bar, Journal of Sound and Vibration, Vol. 277, No. 4–5, 2004, pp. 971-986.
[20] Mousavi, S., Hillström, L., and Lundberg, B., Identification of Complex Shear Modulus From Measured Shear Strains on a Circular Disc Subjected to Transient Torsion at Its Centre, Journal of Sound and Vibration, Vol. 313, No. 3-5, 2008, pp. 567-580.
[21] Graff, K. F., Wave Motion in Elastic Solids, London, UK, Oxford University Press, 1975.
[22] Hen, S., Resonant Frequency Method for the Measurement and Uncertainty Analysis of Acoustic and Elastic Properties, Ultrasonics, Vol. 38, 2000, pp. 206–221.
[23] TAMURA Co., Piezoelectric Ceramics for High Power Applications Data Sheet, Available: https://www.tamurass.co.jp, 2017.