Preparation of Nitrogen-Doped Graphene Aerogel/Epoxy Nanocomposites and Experimental Study of Mechanical Properties
Subject Areas : meso/micro/nano fabricationali kordi 1 , saeed adibnazari 2 , Ali Imam 3 , mohammad najafi 4 , maryam ghasabzadeh saryazdi 5
1 - Department of Mechanical Engineering,
Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Aerospace Engineering,
Sharif University of Technology, Tehran, Iran
3 - Department of Mechanical Engineering,
Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Department of Mechanical Engineering,
Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Vehicle Technology Research Institute,
Amirkabir University of Technology, Tehran, Iran
Keywords:
Abstract :
[1] Geim, A. K., Novoselov, K. S., The Rise of Graphene, Nanoscience and Technology, 2009, pp. 11-19, 10.1142/9789814287005_0002.
[2] Chen, P., Yang, J., Li, S., Wang, Z., Xiao, T., Qian, Y., and Yu, S., Hydrothermal Synthesis of Macroscopic Nitrogen-Doped Graphene Hydrogels for Ultrafast Supercapacitor, Nano Energy, Vol. 2, No. 11, 2013, pp. 249-256, 10.1016/j.nanoen.2012.09.003.
[3] Gorgolis, G., Galiotis, C., Graphene Aerogels: A Review, 2D Materials, Vol. 4, 2017, 032001, 10.1088/2053-1583/aa7883.
[4] Wang, H., Maiyalagan, T., and Wang, X., Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and its Potential Applications, Acs Catalysis, Vol. 2, No. 5, 2012, pp. 781-794, 10.1021/cs200652y.
[5] Rowley Nealea, S. J., Randviir, E. P., Abo Dena, A. S., and Banksa, C. E., An Overview of Recent Applications of Reduced Graphene Oxide as a Basis of Electroanalytical Sensing Platforms, Applied Materials Today, Vol. 10, March 2018, pp. 218–226, 10.1016/j.apmt.2017.11.010.
[6] Kumar, A., Sharma, K., and Dixit, A. R., A Review of the Mechanical and Thermal Properties of Graphene and Its Hybrid Polymer Nanocomposites for Structural Applications, Journal of materials science, Vol. 54. 2019, pp. 5992-6026, 10.1007/s10853-018-03244-3.
[7] Bafana, A. P., Yan, X., Wei, X., Patel, M., Guo, Z., Wei, S., and et al., Polypropylene Nanocomposites Reinforced with Low Weight Percent Graphene Nanoplatelets, Compos Part B- Engineering, Vol. 109, 15 January 2017, pp. 101-107, 10.1016/j.compositesb.2016.10.048.
[8] Cong, L., Li, X., Ma, L., Peng, Z., Yang, C., Han, P., Wang, G., Li, H., Song, W., and Song, G., High-Performance Graphene Oxide/Carbon Nanotubes Aerogel-Polystyrene Composites: Preparation and Mechanical Properties, Materials Letters, Vol. 214, 1 March 2018, pp. 190–193, 10.1016/j.matlet.2017.12.015.
[9] Phetarporn, V., Loykulnant, S., Kongkaew, C., Seubsai, A., and Prapainainar, P., Composite Properties of Graphene-Based Materials/Natural Rubber Vulcanized Using Electron Beam Irradiation, Materials Today Communications, Vol. 19, June 2019, pp. 413-424, 10.1016/j.mtcomm.2019.03.007.
[10] Bhasin, M., Wu, S., Ladani, R. B., Kinloch, A. J., Wang, C. H., and Mouritz, A. P., Increasing the Fatigue Resistance of Epoxy Nanocomposites by Aligning Graphene Nanoplatelets, International Journal of Fatigue, Vol. 113, August 2018, pp. 88-97, 10.1016/j.ijfatigue.2018.04.001.
[11] Yang, M., Zhao, N., Cui, Y., Gao, W., Zhao, Q., Gao, C., Bai, H., and Xie, T., Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience, ACS Nano, Vol. 11, No. 7, 2017, pp. 6817-6824, 10.1021/acsnano.7b01815.
[12] Huang, Z. M., Liu, X. Y., Wu, W. G., Li, Y. Q., and Wang, H., Highly Elastic and Conductive Graphene /Carboxymethylcellulose Aerogels for Flexible Strain-Sensing Materials, Journal of Materials Science, Vol. 52, 2017, pp. 12540-12552, 10.1007/s10853-017-1374-1.
[13] Wang, M., Shao, C., Zhou, S., Yang, J., and Xu, F., Super-Compressible, Fatigue Resistant and Anisotropic Carbon Aerogels for Piezoresistive Sensors, Cellulose, Vol. 25, 2018, pp. 7329-7340. 10.1007/s10570-018-2080-0.
[14] Ma, Y., Chen, Y., Three-Dimensional Graphene Networks: Synthesis, Properties and Applications, National Science Review, Vol. 2, 2015, pp. 40-53, 10.1093/nsr/nwu072.
[15] Kim, J., Han, N. M., Kim, J., Lee, J., Kim, J. K., and Jeon, S., Highly Conductive and Fracture-Resistant Epoxy Composite Based On Non-Oxidized Graphene Flake Aerogel, ACS Applied Materials & Interfaces, Vol. 10, No. 43, 2018, pp. 37507-37516. 10.1021/acsami.8b13415.
[16] Chiou, Y. C., Chou, H. Y., and Shen, M. Y., Effects of Adding Graphene Nanoplatelets and Nanocarbon Aerogels to Epoxy Resins and Their Carbon Fiber Composites, Materials & Design, Vol. 178, 15 September 2019, pp. 107869, 10.1016/j.matdes.2019.107869.
[17] Hummers Jr, W. S., Offeman, R. E., Preparation of Graphitic Oxide, Journal of the American Chemical Society, 1958, pp. 1339-1339, 10.1021/ja01539a017.
[18] Panchakarla, L., Subrahmanyam, K., Saha, S., Govindaraj, A., Krishnamurthy, H., Waghmare, U., and Rao, C., Synthesis, Structure, and Properties of Boron‐and Nitrogen‐Doped Graphene, Advanced Materials, Vol. 21, No. 46, 2009, pp. 4726-4730, 10.1002/adma.200901285.
[19] Hosseini, S. G., Gholami, S., and Mahyari, M., Highly Dispersed Ni–Mn Bimetallic Nanoparticles Embedded in 3D Nitrogen-Doped Graphene as an Efficient Catalyst for the Thermal Decomposition of Ammonium Perchlorate, New Journal of Chemistry, No. 8, 2018, pp. 5889-5899, 10.1039/C8NJ00613J.
[20] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S., Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, Vol. 45, No. 7, 2007, pp. 1558-1565, 10.1016/j.carbon.2007.02.034.
[21] Tuinstra, F., Koenig, J. L., Raman Spectrum of Graphite, The Journal of Chemical Physics, Vol. 53, No. 3, 1970, pp.1126-1130, 10.1063/1.1674108.
[22] Qiu, B., Xing, M., and Zhang, J., Mesoporous TiO2 Nanocrystals Grown in Situ On Graphene Aerogels for High Photocatalysis and Lithium-Ion Batteries, Journal of the American Chemical Society, 2014, pp 5852-5855, 10.1021/ja500873u.
[23] Pimenta, M., Dresselhaus, G., Dresselhaus, M. S., Cancado, L., Jorio, A., and Saito, R., Studying Disorder in Graphite-Based Systems by Raman Spectroscopy, Physical Chemistry Chemical Physics, No. 11, 2007, pp. 1276-1290, 10.1039/B613962K.
[24] Chandrasekaran, S., Seidel, C., and Schulte, K., Preparation and Characterization of Graphite Nano-Platelet (GNP)/Epoxy Nano-Composite: Mechanical, Electrical and Thermal Properties, European Polymer Journal, Vol. 49, No. 12, 2013, pp. 3878-3888, 10.1016/j.eurpolymj.2013.10.008.
[25] Abdullah, S. I., Ansari, M. N. M., Mechanical Properties of Graphene Oxide (GO)/Epoxy Composites, HBRC Journal, Vol. 11, No. 2, 2015, pp. 151–156, 10.1016/j.hbrcj.2014.06.001.
[26] Ni, Y., Chen, L., Teng, K., Shi, J., Qian, X., and Xu, Z., Superior Mechanical Properties of Epoxy Composites Reinforced by 3D Interconnected Graphene Skeleton, ACS Applied Materials & Interfaces,Vol. 7, No. 21, 2015, pp. 11583-11591, 10.1021/acsami.5b02552.
[27] Bortz, D. R., Heras, E. G., and Martin-Gullon, I., Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites, Macromolecules,Vol. 45, No. 1, 2012, pp. 238-245, 10.1021/ma201563k.
[28] Loos, M. R., Yang, J., Feke, D. L., Manas, I., Unal, S., and Younes, U., Enhancement of Fatigue Life of Polyurethane Composites Containing Carbon Nanotubes, Elsevier, Vol. 44, 2013, pp. 740–744, 10.1016/j.compositesb.2012.01.038.
Conflicts of Interest
The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.