Attitude Tracking Control of Autonomous Helicopter using Polytopic-LPV Modeling and PCA-Parameter Set Mapping
Subject Areas : vibration and controlReza Tarighi 1 , Amir Hooshang Mazinan 2 , Mohammad Hosein Kazemi 3
1 - Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Control Engineering, Faculty of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Faculty of Electrical Engineering, Shahed University, Tehran, Iran
Keywords:
Abstract :
[1] Chen, M., Ge, S. S., and Ren, B., Robust Attitude Control of Helicopters with Actuator Dynamics Using Neural Networks, IET Control Theory Appl., Vol. 4, No. 12, 2010 pp. 2837–2854.
[2] Jeong, D. Y., Kang, T., Dharmayanda, H. R., and Budiyono, A., H -Infinity Attitude Control System Design for a Small-Scale Autonomous Helicopter with Nonlinear Dynamics and Uncertainties, J. Aerosp. Eng., Vol. 25, No. 4, 2012, pp. 501–518.
[3] Kadmiry, B., Driankov, D., A Fuzzy Gain-Scheduler for the Attitude Control of an Unmanned Helicopter, IEEE Trans, Fuzzy Syst., Vol. 12, No. 4, 2004, pp. 502–515.
[4] Al-Shehabi, A. G., Fuzzy Logic Attitude Control System for a Mini Helicopter Expanded Non Linear Mathematical Model, Jour. Aerosp. Sci. Technol., Vol. 2, No. 1, 2016, pp. 19–33.
[5] Ohnishi ,Y., Mori ,S., An Attitude Control of a Helicopter by Adaptive PID Controller, International Conference on Advanced Mechatronic Systems, ICAMechS, No. 3, 2013, pp. 565–570.
[6] Zhang, X., Chen, X. , Liu, P., and Wang, J., Adaptive Attitude Controller Design for Unmanned Helicopter, IEEE International Conference on Unmanned Systems (ICUS), 2017.
[7] Bidikli, B., Robust Attitude Tracking Control for a Small – Scaled Unmanned Model Helicopter, 2015.
[8] Li, Z., Liu, H. H. T., Zhu, B., Gao, H., and Kaynak, O., Nonlinear Robust Attitude Tracking Control of a Table-Mount Experimental Helicopter using Output Feedback, IEEE Trans. Ind. Electron., Vol. 62, No. 9, 2015, pp. 5665–5676.
[9] Sheng, S., Sun,, C., An Adaptive Attitude Tracking Control Approach for an Unmanned Helicopter with Parametric Uncertainties and Measurement Noises, Int. J. Control, Autom. Syst., Vol. 14, No. 1, 2016, pp. 217–228.
[10] Li, C., Yang, X., and Xiao, B., Adaptive Attitude Tracking Control of a 3-Degrees-of-Freedom Experimental Helicopter with Actuator Dead-Zone, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., Vol. 233, No. 1,2019, pp. 91–99.
[11] Raj, N., Banavar, Abhishek, R. N., and Kothari, M., Attitude Tracking Control for Aerobatic Helicopters: a Geometric Approach, 2017 IEEE 56th Annu. Conf. Decis. Control. CDC 2017, 2018, pp. 1951–1956.
[12] Tarighi, R., Mazinan, A. H., and Kazemi, M. H., Trajectory Tracking of Nonlinear Unmanned Rotorcraft Based on Polytopic Modeling and State Feedback Control, IETE J. Res., Vol. 13, No. 3, 2020.
[13] Tarighi, R., Mazinan, A. H., and Kazemi, M. H., Velocity Control of Nonlinear Unmanned Rotorcraft using Polytopic Modelling and State Feedback Control, ADMT J., Vol. 13, 2020, pp. 33–49.
[14] Kadmiry, B., Driankov, D., A Fuzzy Gain-Scheduler for the Attitude Control of an Unmanned Helicopter, IEEE Trans. Fuzzy Syst., Vol. 12, No. 4, 2004, pp. 502–515.
[15] Soltanpour, M. R., Hasanvand, F., Robust Linear Parameter Varying Attitude Control of a Quadrotor Unmanned Aerial Vehicle with State Constraints and Input Saturation Subject to Wind Disturbance, Trans. Inst. Meas. Control, Vol. 42, No. 6, 2019, pp. 1083-10962019.
[16] Jafar, A., Bhatti, A. I., Ahmad, S. M., and Ahmed, N., Robust Gain-Scheduled Linear Parameter-Varying Control Algorithm for a Lab Helicopter: A Linear Matrix Inequality–Based Approach, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., Vol. 232, No. 5, 2018, pp. 558–571.
[17] Hasseni, S. E. I., Abdou, L., Robust LPV Control for Attitude Stabilization of a Quadrotor Helicopter Under Input Saturations, Adv. Technol. Innov., Vol. 5, No. 2, 2020, pp. 98–111.
[18] Khalesi, M. H., Salarieh, H., and Saadat Foumani, M., System Identification and Robust Attitude Control of an Unmanned Helicopter using Novel Low-Cost Flight Control System, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., Vol. 234, No. 5, 2020, pp. 634–645.
[19] Johnson, W., Rotorcraft Aeromechanics, Vol. 9781107028, Cambridge, 2006.
[20] Guowei, C., Ben, C. M., and Lee, T. H., Unmanned Rotorcraft Systems. Springer London Dordrecht Heidelberg New York British, 2011.
[21] Ren, B., Ge, S. S., Chen, C., Fua, C. H., and Lee, T. H., Modeling, Control and Coordination of Helicopter Systems. New York, NY: Springer New York Dordrecht Heidelberg London, 2012.
[22] Bramwell, A. R. S., Done, G., and Balmford, D., Bramwell’s Helicopter Dynamics. Butterworth-Heinemann, 2001.
[23] Batrakov, A., Kusyumov, A., Kusyumov, S., Mikhailov, S., and Barakos, G. N., Simulation of Tail Boom Vibrations using Main Rotor-Fuselage Computational Fluid Dynamics (CFD), Appl. Sci., Vol. 7, No. 9, 2017.
[24] Liu, C., Chen, W., and Andrews, J., Explicit Non-Linear Model Predictive Control for Autonomous Helicopters, J. Aerosp. Eng., 2011.
[25] Lu, H., Liu, C., Guo, L., and Chen, W. H., Flight Control Design for Small-Scale Helicopter using Disturbance- Observer-Based Backstepping, J. Guid. Control. Dyn., Vol. 38, No. 11, 2015, pp. 2235–2240.
[26] Chicunque, C. P. M., Robust and Linear Parameter-Varying Control of Aeroservoelastic Systems, University of Minnesota, 2015.
[27] Bruzelius, F., Linear Parameter-Varying Systems an approach to gain scheduling, Chalmers University of Technology Goteborg, Sweden, 2004.
[28] Hoffmann, C., Werner, H., A Survey of Linear Parameter-Varying Control Applications Validated by Experiments or High-Fidelity Simulations, IEEE Trans. Control Syst, Technol., Vol. 23, No. 2, 2015, pp. 416–433.
[29] Kajiwara, LPV Techniques for Control of an Invered Pendulum, IEEE Control Syst.1999, pp. 44–54.
[30] Briat, C., Linear Parameter-Varying and Time-Delay Systems:Analysis, Observation, Filtering and Control, Springer Heidelberg New York Dordrecht London, Vol. 3, 2015.
[31] Briat, C., Robust Control and Observation of LPV Time-Delay Systems Corentin Briat To cite this version, GIPSA-lab, 2009.
[32] Briat, C., Robust Control and Observation of LPV Time-Delay Systems, Institut National Polytechnique de Grenoble - INPG, 2009.
[33] Kwiatkowski, A., Werner, H., PCA-Based Parameter Set Mappings for LPV Models with Fewer Parameters and Less Overbounding, IEEE Trans. Control Syst. Technol., Vol. 16, No. 4, 2008, pp. 781–788.
[34] Brunton, S. L., Kutz, J. N., Singular Value Decomposition (SVD), in Data-Driven Science and Engineering, Cambridge university press, 2019, pp. 3–46.
[35] Tijani, I. B., Akmeliawati, R., Legowo, A., Budiyono, A., and Muthalif, A. G. A., H∞ robust Controller for Autonomous Helicopter Hovering Control, Aircr. Eng. Aerosp. Technol., Nol. 83, No. 6, pp. 2011, 363–374.