A New Analysis, Design and Fabrication of DVB-T/T2 LDMOS UHF Broadband Amplifier
Subject Areas : Majlesi Journal of Telecommunication DevicesFarbod Setoudeh 1 , Mohsen Pooya 2
1 - Department of Electrical Engineering, Arak University of Technology, Arak, Iran.
2 -
Keywords:
Abstract :
[1] S. Alsahali, D. Gecan, A. Alt, G. Wang, S. M. H. Syed Anera, P. Chen, S. Woodington, A. Sheikh, P. Tasker, and J. Lees, “A novel modulated rapid load pull system with digital pre-distortion capabilities,” in 93rd ARFTG Microwave Measurement Conference (ARFTG), Boston, USA, July 7, 2019.
[2] S. M. H. Syed Anera, “High-Efficiency And Broadband Pa Design Considering The Impact Of Device Knee Voltage” A thesis submitted to Cardiff University in candidature for the degree of Doctor of Philosophy, 2019.
[3] S. J. C. H. Theeuwen, H. Mollee, R. Heeres and F. Van Rijs, “LDMOS technology for power amplifiers up to 12 GHz,” in 13th European Microwave Integrated Circuits Conference (EUMiC), Madrid, September 2018.
[4] T. S. Kaldi Li, Song Di, and William Yin, “A 40W ultra broadband LDMOS power amplifier,” presented at the Int. IEEE Conf. Microwave Symposium, 2015.
[5] L. S. Dajie Dai, Jincai Wen,Guodong Su, and Lili Guo, “A 10W broadband power amplifier for base station,” presented at the Int. IEEE Conf. On Microwave and Millimeter Wave Technology , 2012.
[6] L. W. Srinidhi Embar R., Jangheon Kim, Chris Dragon, and Geoffrey Tucker, “A 400 W 2-way asymmetrical doherty PA with 50% efficiency based on second-generation airfastTM LDMOS technology,” presented at Int. IEEE conf. The Power Amplifiers for Wireless and Radio Applications , 2015.
[7] J. H. Qureshi, W. Sneijers,R. Keenan, L. C. N. deVreede, and F. van Rijs, “A 700-W Peak Ultra-Wideband Broadcast Doherty Amplifier,” presented at Int. IEEE Conf. Microwave Symposium , 2014.
[8] M. Hayatia,and S. Roshani, “A Broadband Doherty Power Amplifier with HarmonicSuppression,” AEUE Int. Journal of Electronics and Communications,. 2013.
[9] J. Yao, G. Shen ,G. Zhang, and J. Chen,” A Novel Four Stage 200W Doherty Power Amplifier for DVB-T Transmitter,” presented at Int. IEEE Conf On Microwave and Millimeter Wave Technology, 2012.
[10] N. D. L´opez , J. Hoversten, Z. Popovi´c, and Fellow ,”Design Method for UHF Class-E Power Amplifiers,” presented at Int. Annual IEEE Conf. Compound Semiconductor Integrated Circuit Symposium, 2009.
[11] L. Piazzon, R. Giofrµe, P. Colantonio, and F. Giannini, “A Method for Designing Broadband Doherty Power Amplifers,” Progress In Electromagnetics Research, Vol. 145, pp. 319-331, 2014.
[12] Y. Shang, H. Xu, J. Mo, Z. Wang, X. Xu, Z. Tu, X. Zhang, H. Zheng, W. Chen, and F. Yu, “The Design and Thermal Reliability Analysis of a High-Efficiency K-Band MMIC Medium-Power Amplifier with Multiharmonic Matching,” Active and Passive Electronic Components, Hindawi Publishing Corporation, VoL.2016, Article ID 6295405, 7 pages,2016.
[13] X. Chen, W. Chen, F. M. Ghannouchi, Z. Feng, and Y. Liu, “A Broadband Doherty Power Amplifier Based on Continuous-Mode Technology,” IEEE Transactions on Microwave Theory and Techniques, VOL. 64, Issue. 12, pp. 4505 – 4517, Dec. 2016 .
[14] Y. Dong, L. Mao and S. Xie, “Fully Integrated Class-J Power Amplifier in Standard CMOS Technology,” IEEE Microwave and Wireless Components Letters ,Vol.27, Issue. 1, Jan. 2017.
[15] W. Hallberg, M. Özen, D. Gustafsson,K. Buisman, and C. Fager, “A Doherty Power Amplifier Design Method for Improved Efficiency and Linearity,” IEEE Transactions on Microwave Theory and Techniques, Vol.64, Issue.12, Dec. 2016.
[16] J. Hur, H. Kim, O. Lee, K. W. Kim, K. Lim, C. Lee and J. Laskar, “A Multi-Level Class D CMOS Power Amplifier for an Out-Phasing Transmitter with a Non-Isolated Power Combiner,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.63, Issue. 7, July 2016 .
[17] K. Kim, J. Ko, S. Lee, and S. Nam, “A Two-Stage Broadband Fully Integrated CMOS Linear Power Amplifier for LTE Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs ,Vol.63, Issue. 6, June 2016 .
[18] H. Lee, and et al., “Optimized Current of the Peaking Amplifier for Two-Stage Doherty Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, Vol. 65, Issue.1, Jan. 2017.
[19] M. Özen,K. Andersson, and C.Fager, “Symmetrical Doherty Power Amplifier With Extended Efficiency Range,” IEEE Transactions on Microwave Theory and Techniques, Vol. 64, Issue. 4, April 2016.
[20] J. Pang and et al., “Design of continuous-mode GaN power amplifier with compact fundamental impedance solutions on package plane,” IET Microwaves, Antennas & Propagation, Vol. 10, Issue. 10, 7 18 2016.
[21] T. Qi, S. He and W. Shi , “Third-octave power amplifier using ring based matching network with high efficiency.” ELECTRONICS LETTERS ,Vol. 52 , No. 10 pp. 883–885, 12th May 2016.
[22] H. Taghavi and et.al., “Sequential Load-pull Technique for Multi-octave Design of RF Power Amplifiers,” IEEE Transactions on Circuits and Systems II, Express Briefs Vol. 63, Issue.9, Sept. 2016.
[23] H.F. Wu and et al. , “Analysis and Design of an Ultrabroadband Stacked Power Amplifier in CMOS Technology,” IEEE Transactions on Circuits and Systems II, Express Briefs Vol. 63, Issue. 1, Jan. 2016.
[24] D. Fan, Y. Deng, and Z n.. Li,”Design and Simulation of a Wideband PowerAmplifier from 600MHz to 1000MHz,”presented at the 3rd Int. IEEE Conf. Symposium on Microwave Antenna Propagation and EMC Technologies for Wireless Communications, 2009.
[25] H. J. Zhou,and H. F. Wu,” Design Of An S-Band Two-Way Inverted Asym-Metrical Doherty Power,” Progress In Electromagnetics Research Letters,Vol. 39 ,2013.
[26] C. Sun, T. Liu, Y. Ye, Y. Zhao, X. Luo,and J. Li,” Optimization Design of A Broadband Three-Stage Doherty Power Amplifier,” presented at Int. IEEE Conf. On Electronics, Communications and Control ,2011.
[27] A. C. N. Giovanneu, P. Singerl, S. Maddiol, C. Schuberth, and G. M. A. Del Chiaro, “A 250W LDMOS Doherty PA with 31% of Fractional Bandwidth for DVB-T Applications,” presented at Int. IEEE Conf. Microwave Symposium, 2014 .
[28] D. H. Chuc,and B. G. Duong, “Design and fabrication of a high power S band LDMOS amplifier for microwave powertransmission and wireless communication,” Int. Journal of Advancements in Communication Technologies , vol. 1 , 2014.
[29] K. Narendra and et al. “Dual Fed Distributed Amplifier With Controlled Termination Adjustment,” Progress In Electromagnetics Research, Vol. 139, pp.761-777, 2013.
[30] U. Eswaran and et al. “A High Efficiency 1.8W Power Amplifier for Wireless Communications, ” ELEKTRONIKA IR ELEKTROTECHNIKA, Vol. 20, 2014.
[31] U. Eswaran and et al. “Class-E Power Amplifier with Novel Pre-Distortion Linearization Technique for 4G Mobile Wireless Communications, ” ELEKTRONIKA IR ELEKTROTECHNIKA ,Vol. 20, 2014.
[32] R. Ludwig, and P. Bretchko, RF CIRCUIT DESIGN:THEORY AND APPLICATIONS. Prentic Hall:Tom Robbins,2000.
[33] M. Sajedin, I.T.E. Elfergani, J. Rodriguez, R. Abd-Alhameed, and M. Fernandez Barciela, “A Survey on RF and Microwave Doherty Power Amplifier for Mobile Handset Applications” Electronics, Vol. 8, pp. 1-31, 2019.
[34] B. Shah, G. Dalwadi, H. Shah, and N. Kothari, “Novel Outphasing Power Amplifiers Designed Withan Analytic Generalized Doherty–ChireixContinuum Theory” IETE Journal of Research, Vol. 10, pp. 1-10, 2019.
[35] S. Zhao, L.Yang, Y. REN, and Y. Xu, “Linearity Improved Doherty Power Amplifier Using Non-Foster Circuit” IEEE Access, Vol.7, pp. 40109-40113, 2019.
[36] C. Liang, P. Roblin, Y. Hahn, Z. Popovic, and H. C. Chang, “Novel Outphasing Power Amplifiers Designed With an Analytic Generalized Doherty–Chireix Continuum Theory” IEEE Transactions On Circuits And Systems–I, pp. 1-14, 2019.
[37] V. Prodanov, and M. Banu, “Power Amplifier Principles and Modern Design Techniques,” in Wireless