A Novel method for assigning Joint power spectrum and Power Selection in device to device networks to improve performance
Subject Areas : Majlesi Journal of Telecommunication DevicesAnahita Jabbari 1 , S. Mahmood Daneshvar Farzanegan 2
1 - Department of Electrical EngineeringIslamic Azad Univercity of Najaf Abad
2 - I assistant prof slamic Azazd university of Najaf Abad, Faculty of Electric engineering, Najaf Abad, Iran
Keywords:
Abstract :
[1] A. Asheralieva and Y. Miyanaga, "Dynamic buffer status-based control for LTE-A network with underlay D2D communication," IEEE transactions on communications, vol. 64, no. 3, pp. 1342-1355, 2016.
[2] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, "NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey," Computer networks, vol. 50, no. 13, pp. 2127-2159, 2006.
[3] W. Y. Lee, "Spectrum management in cognitive radio wireless networks," Georgia Institute of Technology, 2009.
[4] A. Vosoughi, J. R. Cavallaro, and A. Marshall, "Robust consensus-based cooperative spectrum sensing under insistent spectrum sensing data falsification attacks," in 2015 IEEE Global Communications Conference (GLOBECOM), 2015, pp. 1-6: IEEE.
[5] W. Zhang, Z. Wang, Y. Guo, H. Liu, Y. Chen, and J. Mitola III, "Distributed cooperative spectrum sensing based on weighted average consensus," in 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, 2011, pp. 1-6: IEEE.
[6] S. Tanwar, S. Tyagi, N. Kumar, and M. S. Obaidat, "LA-MHR: Learning Automata Based Multilevel Heterogeneous Routing for Opportunistic Shared Spectrum Access to Enhance Lifetime of WSN," IEEE Systems Journal, no. 99, pp. 1-11, 2018.
[7] N. Vucevic, I. F. Akyildiz, and J. Perez-Romero, "Cooperation reliability based on reinforcement learning for cognitive radio networks," in 2010 Fifth IEEE Workshop on Networking Technologies for Software Defined Radio Networks (SDR), 2010, pp. 1-6: IEEE.
[8] Y. Li, D. Jin, J. Yuan, and Z. Han, "Coalitional games for resource allocation in the device-to-device uplink underlaying cellular networks," IEEE Transactions on wireless communications, vol. 13, no. 7, pp. 3965-3977, 2014.
[9] Y. Xiao, K.-C. Chen, C. Yuen, Z. Han, and L. A. DaSilva, "A Bayesian overlapping coalition formation game for device-to-device spectrum sharing in cellular networks," IEEE Transactions on Wireless Communications, vol. 14, no. 7, pp. 4034-4051, 2015.
[10] L. Rose, S. Lasaulce, S. M. Perlaza, and M. Debbah, "Learning equilibria with partial information in decentralized wireless networks," IEEE communications Magazine, vol. 49, no. 8, pp. 136-142, 2011.
[11] S. Rasaneh and M. Jahanshahi, "A QoS aware learning automata based channel assignment method in cognitive network," Wireless Personal Communications, vol. 97, no. 1, pp. 495-519, 2017.
[12] S. Gheisari and M. R. Meybodi, "LA-CWSN: A learning automata-based cognitive wireless sensor networks," Computer Communications, vol. 94, pp. 46-56, 2016.
[13] B.-Y. Huang, S.-T. Su, C.-Y. Wang, C.-W. Yeh, and H.-Y. Wei, "Resource allocation in D2D communication-A game theoretic approach," in 2014 IEEE International Conference on Communications Workshops (ICC), 2014, pp. 483-488: IEEE.
[14] A. Larmo, M. Lindström, M. Meyer, G. Pelletier, J. Torsner, and H. Wiemann, "The LTE link-layer design," IEEE Communications magazine, vol. 47, no. 4, pp. 52-59, 2009.
[15] A. Asheralieva and Y. Miyanaga, "An autonomous learning-based algorithm for joint channel and power level selection by D2D pairs in heterogeneous cellular networks," IEEE transactions on communications, vol. 64, no. 9, pp. 3996-4012, 2016.
[16] T. Alpcan, H. Boche, M. L. Honig, and H. V. Poor, Mechanisms and games for dynamic spectrum allocation. Cambridge University Press, 2013.