Actual evapotranspiration estimation by Triangle algorithm and landsat8 data (case study: Mashhad plain-Khorasan Razavi province)
Subject Areas : Applications in water resources management
Mojdeh Salimifard
1
,
Hosein Sanaei nejad
2
,
Alireza Rashki
3
1 - The Ferdowsi University of Mashhad- Faculty of Agriculture- Department of water engineering
2 - Professor, Ferdowsi University of Mashhad Faculty of Agriculture- Department of water engineering
3 - Associated Professor of Ferdowsi university-Department of desert and arid area management-Faculty of Natural Resource and Environment.
Keywords: Triangle algorithem, Actual Evapotranspiration, Landsat8, Mashhad Plain,
Abstract :
The estimation of spatially-variable actual evapotranspiration (AET) is a critical challenge to regional water resources management. Most of the available crop coefficient-based ET computation methods provide point-scale estimates which need up scaling to apply at the catchment or command area scale. A variety of remote sensing methods with varying complexity have been developed to generate regional AET estimates based on surface energy balance or vegetation status. The triangle method is used to estimate regional evapotranspiration (ET) in arid and semi-arid regions. In this study, for estimation, actual evapotranspiration was used Landsat 8 data in 2020 and triangle algorithm in Mashhad plain. The results of the triangle algorithm were verified with the evapotranspiration obtained from the FAO Penman-Monteith coupled crop coefficient in wheat and maize farms. The validation results showed high accuracy of the triangle algorithm in actual evapotranspiration estimation so that the correlation coefficient observed more than 0.7 and the maximum Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) was 1.67 and 1.48 mm per day, respectively.
1. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. “Crop evapotranspiration-Guidelines for computing crop water requirements- FAO Irrigation and drainage paper 56.” Fao, Rome 300 (9): D05109.
2. Bisht G, Venturini V, Islam S, Jiang L. 2005. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens Environ.97(1):52-67.
3. Carlson T.2007. An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery. Sensors,7(8):1612-1629.
4. da Silva BB, Braga AC, Braga CC, de Oliveira LMM, Montenegro SMGL, Barbosa Junior B. 2016. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Rev Bras Eng Agric e Ambient, 20(1):3-8.
5. Gad HE, El-Gayar SM.2010. Climate parameters used to evaluate the evapotranspiration in delta central zone of Egypt. Fourteenth Int Water Technol Conf IWTC14, (February):529-548.
6. Glenn EP, Nagler PL, Huete AR. . 2010.Vegetation Index Methods for Estimating Evapotranspiration by Remote Sensing. Surv Geophys,31(6):531-555.
7. Gowda PH, Chavez JL, Colaizzi PD, Evett SR, Howell TA, Tolk JA. 2008. ET mapping for agricultural water management: Present status and challenges. Irrig Sci,26(3):223-237.
8. Hassan QK, Bourque CPA, Meng FR, Cox RM. 2007. A wetness index using terrain-corrected surface temperature and normalized difference vegetation index derived from standard MODIS products: An evaluation of its use in a humid forest-dominated region of Eastern Canada. Sensors,7(10):2028-2048.
9. Hoedjes JCB, Chehbouni A, Jacob F, Ezzahar J, Boulet G. 2008. Deriving daily evapotranspiration from remotely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco. J Hydrol, 354(1-4):53-64.
10. Jiang L, Islam S. 1999. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys Res Lett,26(17):2773-2776.
11. Kumar U, Sahoo B, Chatterjee C, Raghuwanshi NS. 2020. Evaluation of Simplified Surface Energy Balance Index (S-SEBI) Method for Estimating Actual Evapotranspiration in Kangsabati Reservoir Command Using Landsat 8 Imagery. J Indian Soc Remote Sens, 48(10):1421-1432.
12. Li Z, Jia L, Lu J. 2015. On uncertainties of the Priestley-Taylor/LST-Fc feature space method to estimate evapotranspiration: Case study in an arid/semiarid region in northwest China. Remote Sens, 7(1):447-466.
13. Long D, Singh VP.2012. A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery. Remote Sens Environ,121:370-388.
14. Luo T, Jutla A, Islam S. 2015. Evapotranspiration estimation over agricultural plains using MODIS data for all sky conditions. Int J Remote Sens,36(5):1235-1252.
15. Mogbeli Damaneh M, Sanaeinejad S.H.2018. Estimate of potential evapotranspiration in Freiman using the priestiley-taylor method and remote sensing techniqe. Journal of RS & GIS for Natural Resources, 9(3): 72-84. (In Persian)
16. Morshedi A, Naderi M, Tabatabaei S H, Mohammadi J.2017. Estimation of Actual Evapotranspiration at Regional Scale using Remote sensing data in Shahrekord Plain (II) Comparing SEBAL and METRIC to Some Mathematical Models of Evapotranspiration . Journal Water and Soil Sci (Sci. & Technol. Agric. & Natur. Resour.), 21 (3) :1-13 (In Persian)
17. Paymard P. Assessment of Land Capability for Different Irrigation Systems by Parametric and Fuzzy Approaches in the Mashhad Plain , Northeast Iran Assessment of Land Capability for Different Irrigation Systems by Parametric and Fuzzy Approaches in the Mashhad Plain . 2015;(May).
18. Peng J, Borsche M, Liu Y, Loew A.2013. How representative are instantaneous evaporative fraction measurements of daytime fluxes? Hydrol Earth Syst Sci,17(10):3913-3919.
19. Pourmohamad Y, Ghandehari A, Davary K, Shirazi P. 2020. Multicriteria Decision-Making Approach to Enhance Automated Anchor Pixel Selection Algorithm for Arid and Semi-Arid Regions. J Hydrol Eng,25(11):04020049.
20. Rango A.1994. Application of remote sensing methods to hydrology and water resources. Hydrol Sci J, 39(4):309-320.
21. Rasmussen MO, Srensen MK, Wu B, Yan N, Qin H, Sandholt I. 2014. Regional-scale estimation of evapotranspiration for the North China Plain using MODIS data and the triangle-approach. Int J Appl Earth Obs Geoinf. 2014;31(1):143-153.
22. Reynolds JF, Stafford Smith DM, Lambin EF, et al. 2007. Ecology: Global desertification: Building a science for dryland development. Science (80- ),316(5826):847-851.
23. Stisen S, Sandholt I, Nørgaard A, Fensholt R, Jensen KH. 2008.Combining the triangle method with thermal inertia to estimate regional evapotranspiration - Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sens Environ,112(3):1242-1255.
24. Tang R, Li ZL, Tang B. 2010. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens Environ,114(3):540-551.
25. Teixeira AH d. C, Bastiaanssen WGM, Ahmad MD, Bos MG. 2009. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil. Part A: Calibration and validation. Agric For Meteorol,149(3-4):462-476.
26. Zhang H, Gorelick SM, Avisse N, Tilmant A, Rajsekhar D, Yoon J. 2016. A new temperature-vegetation triangle algorithm with Variable Edges (TAVE) for satellite-based actual evapotranspiration Estimation. Remote Sens,8(9).