Effect of the Multi Vibration Absorbers on the Nonlinear FG Beam Under Periodic Load with Various Boundary Conditions
Subject Areas : Mechanical Engineering
1 - Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
2 - Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
Keywords:
Abstract :
[1] Mao Q., Pietrzko S., 2010, Free vibration analysis of stepped beams by using adomian decomposition method, Applied Mathematics and Computation 217: 3429-3441.
[2] Hsu J.C., Lai H.Y., Chen C.K., 2008, Free vibration of non-uniform euler-bernoulli beams with general elastically end constraints using adomain modified decomposition method, Journal of Sound and Vibration 318: 965-981.
[3] Aydogdu M., Taskin V., 2007, Free vibration analysis of functionally graded beams with simply supported edges, Material Design 28: 1651-1656.
[4] Sina S.A., Navazi H.M., Haddadpour H., 2009, An analytical method for free vibration analysis of functionally graded beams, Material Design 30: 741-747.
[5] Kapuria S., Bhattacharyya M., Kumar A.N., 2008, Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation, Composite Structures 82: 390-402.
[6] Kitipornchai S., Ke L.L., Yang J., Xiang Y., 2009, Nonlinear vibration of edge cracked functionally graded timoshenko beams, Journal of Sound and Vibration 324: 962-982.
[7] Alshorbagy Amal E., Eltaher M.A., Mahmoud F.F., 2011, Free vibration characteristics of a functionally graded beam by finite element method, Applied Mathematical Modelling 35: 412-425.
[8] Wattanasakulpong N., Prusty B.G., Kelly D.W., Hoffman M., 2010, A theoretical investigation on the free vibration of functionally graded beams, Proceedings of the 10th International Conference on Computational Structures Technology, Valencia.
[9] Yang J., Chen Y., 2008, Free vibration and buckling analysis of functionally graded beams with edge cracks, Composite Structures 83: 48-60.
[10] Sahraee S., Saidi A.R., 2009, Free vibration and buckling analysis of functionally graded deep beam-columns on two-parameter elastic foundations using the differential quadrature method, Journal of Mechanical Engineering Science 223: 1273-1284.
[11] Rahimi G.H., Gazor M.S., Hemmatnezhad M., Toorani H., 2013, On the postbuckling and free vibrations of FG Timoshenko beams, Composite Structures 95: 247-253.
[12] Kojima H., Saito H., 1983, Forced vibration of a beam with a non-linear dynamic vibration absorber, Journal of Sound and Vibration 88: 559-568.
[13] Huang Y.M., Chen C.C., 2000, Optimal design of dynamic absorbers on vibration and noise control of the fuselage, Composite Structures 76: 691-702.
[14] Yamaguchi H., 1985, Vibrations of a beam with an absorber consisting of a viscoelastic beam and a spring-viscous damper, Journal of Sound and Vibration 103: 417-425.
[15] Juang J.N., 1984, Optimal design of a passive vibration absorber for a truss beam, Journal of Guidance Control and Dynamics 7: 733-739.
[16] Najafi M., Ashory M.R., Jamshidi E., 2009, Optimal design of beam vibration absorbers under point harmonic excitation, Society for Experimental Mechanics, Orlando, Florida USA.
[17] Bonsel J.H., Fey R.H.B., Nijmeijer H., 2004, Application of a dynamic vibration absorber to a piecewise linear beam system, Nonlinear Dynamic 37: 227-243.
[18] Esmailzadeh E., Jalilj N., 1998, Optimum design of vibration absorbers for structurally damped Timoshenko Beams, Journal of Vibration and Acoustics 120: 833-841.
[19] Wong W.O., Tang S.L., Cheung Y.L., Cheng L., 2007, Design of a dynamic vibration absorber for vibration isolation of beams under point or distributed loading, Journal of Sound and Vibration 301: 898-908.
[20] Kang Y.K., Park C.h., Kim J., Choi S.B., 2002, Interaction of active and passive vibration control of laminated composite beams with piezoceramic sensors/actuators, Material Design 23: 277-286.
[21] Khorshidi M.A., Shariati M., 2016, Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory, Journal of the Brazilian Society of Mechanical Sciences and Engineering 38: 2607-2619.
[22] Volmir A.S., 1972, Non-Linear Dynamics of Plates and Shells, Science Edition M, USSR.
[23] Majkut L., 2009, Free and forced vibration of Timoshenko beams described by single difference equation, Journal of Theoretical and Applied Mechanics 47: 193-210.