Vibration Analysis of Rotary Tapered Axially Functionally Graded Timoshenko Nanobeam in Thermal Environment
Subject Areas : EngineeringN Shafiei 1 , M Hamisi 2 , M Ghadiri 3
1 - Faculty of Engineering, Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
2 - Mechanical Engineering, Shahid Beheshti University, Tehran, Iran
3 - Faculty of Engineering, Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
Keywords:
Abstract :
[1] Rasheedat M., 2012, Functionally graded material: An overview, Proceedings of the World Congress on Engineering.
[2] Wang S.S., 1983, Fracture mechanics for delamination problems in composite materials, Journal of Composite Materials 17: 210-223.
[3] Vytautas Ostasevicius R.D., 2011, Microsystems dynamics, International Series on Intelligent Systems, Control, and Automation: Science and Engineering.
[4] Li X.B.B., Takashima K., Baek C.W., Kim Y.K., 2003, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy 97: 481-494.
[5] Pei J.T.F., Thundat T., 2004, Glucose biosensor based on the microcantilever, Analytical Chemistry 76: 292-297.
[6] Kaya M.O., 2006, Free vibration analysis of a rotating Timoshenko beam by differential transform method, Aircraft Engineering and Aerospace Technology 78:194-203.
[7] Dewey H., Hodges M.J.R., 1981, Free-vibration analysis of rotating beams by a variable-order finite-element method, AIAA Journal 19: 1459-1466.
[8] Chen W.L.L., Ma X., 2011, A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation, Composite Structures 93: 2723-2732.
[9] Akgöz B.C.Ö., 2012, Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory, Archive of Applied Mechanics 82: 423-443.
[10] Asghari M. Kahrobaiyan M.H., Ahmadian M.T., 2010, A nonlinear Timoshenko beam formulation based on the modified couple stress theory, Engineering Science 48: 1749-1761.
[11] Challamel N.,Wang.C.M., 2008, The small length scale effect for a non-local cantilever beam: a paradox solved, Nanotechnology 19: 345703.
[12] Chen Y.Z.J., Zhang H., 2015, Free vibration analysis of rotating tapered Timoshenko beams via variational iteration method, Vibration and Control 2015: 1-15.
[13] Dehrouyeh-Semnani A., 2015, The influence of size effect on flapwise vibration of rotating microbeams, International Journal of Engineering Science 94: 150-163.
[14] Yong H., Xian-Fang L., 2010, A new approach for free vibration of axially functionally graded beams with non-uniform cross-section, Journal of Sound and Vibration 329: 2291-2303.
[15] Shojaeefard M. H., 2018, Magnetic field effect on free vibration of smart rotary functionally graded nano/microplates: A comparative study on modified couple stress theory and nonlocal elasticity theory, Journal of Intelligent Material Systems and Structures 29(11): 2492-2507.
[16] Shojaeefard M.H., 2018, Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media, Journal of Intelligent Material Systems and Structures 29(11): 2344-2361.
[17] Shojaeefard M.H., 2018, Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition, Applied Mathematical Modelling 61: 255-279.
[18] Korak S., Ranjan G., 2014, Closed-form solutions for axially functionally gradedTimoshenko beams having uniform cross-section and fixed–fixed boundary condition,Composites: Part B 58: 361-370.
[19] Shahba A., Attarnejad R., Tavanaie Marvi M., Hajilar S., 2011, Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions, Composites: Part B 42: 801-808.
[20] Shahba A., Sundaramoorthy R., 2012, Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials, Applied Mathematical Modelling 36: 3094-3111.
[21] Yong H., Ling-E Y., Qi-Zhi L., 2013, Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section, Composites: Part B 45: 1493-1498.
[22] Sundaramoorthy R., 2013, Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods, Applied Mathematical Modelling 37: 4440-4463.
[23] Swaminathan K., Naveenkuma D.T., Zenkour A. M., Carrera E., 2014, Stress, vibration and buckling analyses of FGM plates—A stateof-the-art review, Composite Structures 120: 10-31.
[24] Shojaeefard M.H. , Saeidi Googarchin H., Mahinzare M., Ghadiri M. 2018, Free vibration and critical angular velocity of a rotating variable thickness two-directional FG circular microplate, Microsystem Technologies 24: 1525-1543.
[25] Shojaeefard M.H. , Saeidi Googarchin H., Ghadiri M., Mahinzare M., 2017, Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT, Applied Mathematical Modelling 50: 633-655.
[26] Bellman R., Casti J., 1971, Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications 34: 235-238.
[27] Bellman R., Kashef B., Casti J., 1972, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics 10: 40-52.
[28] Shu C., 2000, Differential Quadrature and its Application in Engineering, Springer.
[29] Shu C., Richards B.E., 1992, Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids 15: 791-798.
[30] Viola E., Miniaci M., Fantuzzi N., Marzani A., 2015, Vibration analysis of multi-stepped and multi-damaged parabolic arches using GDQ, Curved and Layered Structures 2: 28-49.
[31] Wang X., GU H., 1997, Static analysis of frame structures by the differential quadrature element method, International Journal for Numerical Methods in Engineering 40: 759-772.
[32] Chen C.-N., 1998, Solution of beam on elastic foundation by DQEM, Journal of Engineering Mechanics 124: 3509-3526.
[33] Shahba A., Attarnejad R., Hajilar S., 2013, A mechanical-based solution for axially functionally graded tapered Euler-Bernoulli beams, Mechanics of Advanced Materials and Structures 20: 696-707.
[34] Yang J., Shen H.-S., 2002, Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments, Journal of Sound and Vibration 255: 579-602.
[35] Shafiei N., Kazemi M., Ghadiri M., 2015, On size-dependent vibration of rotary axially functionally graded microbeam, International Journal of Engineering Science 101: 29-44.
[36] Wang C., Zhang Y., He X., 2007, Vibration of nonlocal Timoshenko beams, Nanotechnology 18: 105401.