Free Vibration Analysis of Multi-Layer Rectangular Plate with Two Magneto-Rheological Fluid Layers and a Flexible Core
Subject Areas : Mechanical EngineeringM Shekarzadeh 1 , M.M Najafizadeh 2 , P Yousefi 3 , A. R Nezamabadi 4 , K Khorshidi 5
1 - Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 - Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
3 - Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
4 - Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
5 - Mechanical Engineering Department, Faculty of Engineering, Arak University, Arak, Iran
Keywords:
Abstract :
[1] Nayak A., Moy S., Shenoi R., 2002, Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory, Composites Part B: Engineering 33(7): 505-519.
[2] Wang J., Meng G., 2001, Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 215(3): 165-174.
[3] Weiss K.D., Carlson J.D., Nixon D.A., 1994, Viscoelastic properties of magneto-and electro-rheological fluids, Journal of Intelligent Material Systems and Structures 5(6): 772-775.
[4] Guo Y.-Q., 2017, Preparation and experimental study of magnetorheological fluids for vibration control, International Journal of Acoustics and Vibration 22(2): 194-201.
[5] Rajamohan V., Sundararaman V., Govindarajan B., 2013, Finite element vibration analysis of a magnetorheological fluid sandwich beam, Procedia Engineering 64: 603-612.
[6] Yao X., 2016, Normal force of magnetorheological fluids with foam metal under oscillatory shear modes, Journal of Magnetism and Magnetic Materials 403: 161-166.
[7] Bossis G., 2002, Magnetorheology: fluids, structures and rheology, Ferrofluids 594: 202-230.
[8] De Vicente J., Klingenberg D.J., Hidalgo-Alvarez R., 2011, Magnetorheological fluids: a review, Soft matter 7(8): 3701-3710.
[9] Dragašius E., 2012, Evaluation of the resistance force of magnetorheological fluid damper, Journal of Vibroengineering 14(1):1-6.
[10] Guo H., Liao W., 2012, A novel multifunctional rotary actuator with magnetorheological fluid, Smart Materials and Structures 21(6): 065012.
[11] Klingenberg D.J., 2001, Magnetorheology: applications and challenges, AIChE Journal 47(2): 246-249.
[12] Li W., Du H., 2003, Design and experimental evaluation of a magnetorheological brake, The International Journal of Advanced Manufacturing Technology 21(7): 508-515.
[13] Yamaguchi H., 2012, Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields, Journal of Magnetism and Magnetic Materials 324(20): 3238-3244.
[14] Yeh Z.-F., Shih Y.-S., 2006, Dynamic characteristics and dynamic instability of magnetorheological material-based adaptive beams, Journal of Composite Materials 40(15): 1333-1359.
[15] Rajamohan V., Rakheja S., Sedaghati R., 2010,Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid, Journal of Sound and Vibration 329(17): 3451-3469.
[16] Mohammadi F., Sedaghati R., Nonlinear free vibration analysis of sandwich shell structures with a constrained electrorheological fluid layer, Smart Materials and Structures 21(7): 075035.
[17] Yeh J.-Y., 2013, Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment, Smart Materials and Structures 22(3): 035010.
[18] Yeh J.-Y., 2014,Vibration characteristics analysis of orthotropic rectangular sandwich plate with magnetorheological elastomer, Procedia Engineering 79: 378-385.
[19] Hoseinzadeh M., Rezaeepazhand J., 2014,Vibration suppression of composite plates using smart electrorheological dampers, International Journal of Mechanical Sciences 84: 31-40.
[20] Eshaghi M., Sedaghati R., Rakheja S., 2016, Analytical and experimental free vibration analysis of multi-layer MR-fluid circular plates under varying magnetic flux, Composite Structures 157: 78-86.
[21] Payganeh G., Malekzadeh K., Malek-Mohammadi H., 2016, Free vibration of sandwich panels with smart magneto-rheological layers and flexible cores, Journal of Solid Mechanics 8(1): 12-30.
[22] Eshaghi M., Sedaghati R., Rakheja S., 2017,Vibration analysis and optimal design of multi-layer plates partially treated with the MR fluid, Mechanical Systems and Signal Processing 82: 80-102.
[23] Arani A.G. Soleymani T., 2019, Size-dependent vibration analysis of a rotating MR sandwich beam with varying cross section in supersonic airflow, International Journal of Mechanical Sciences 151: 288-299.
[24] Khorshidi K., Fallah A., 2016, Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory, International Journal of Mechanical Sciences 113: 94-104.
[25] Frostig Y., Thomsen O.T., 2004, High-order free vibration of sandwich panels with a flexible core, International Journal of Solids and Structures 41(5-6): 1697-1724.
[26] Reddy J.N., 2004, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
[27] Ramamoorthy M., Rajamohan V., AK J., 2016,Vibration analysis of a partially treated laminated composite magnetorheological fluid sandwich plate, Journal of Vibration and Control 22(3): 869-895.