Vibration Analysis of Size-Dependent Piezoelectric Nanobeam Under Magneto-Electrical Field
Subject Areas : Mechanical EngineeringM Ghadiri 1 , M Karimi Asl 2 , M Noroozi 3
1 - Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
2 - Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
3 - Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
Keywords:
Abstract :
[1] Eringen A., 1968, Mechanics of micromorphic continua, Mechanics of Generalized Continua 104: 18-35.
[2] Leissa A.W., 1969, Vibration of Plates, Ohio State University Columbus.
[3] Eringen A., 1972, Nonlocal polar elastic continua, International Journal of Engineering Science 10:1-16.
[4] Van den Boomgard J., Terrell D.R., Born R.A.J., 1974, An in situ grown eutectic magnetoelectric composite material, Journal of Materials Science 9: 1705-1709.
[5] Eringen A., 1976, Nonlocal Micropolar Field Theory, In Continuum Physics, Academic Press, New York.
[6] Eringen A., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54(9): 4703-4710.
[7] Eringen A., 2002, Nonlocal Continuum Field Theories, Springer, New York.
[8] Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., 2003, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids 51(8): 1477-1508.
[9] Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science 41(3-5): 305-312.
[10] Zheng H.,Wang J., Lofland S.E., 2004, Multiferroic BaTiO3-CoFe2O4 nanostructures, Science 303: 661-663.
[11] Wang Q., 2005, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied Physics 98: 124301.
[12] Eringen A., 2006, Nonlocal continuum mechanics based on distributions, International Journal of Engineering Science 44(3): 141-147.
[13] Martin L.W., Crane S.P., Chu Y.H., 2008, Multiferroics and magnetoelectrics: Thin films and nanostructures, Journal of Physics: Condensed Matter 20: 434220.
[14] Wang C.M., Kitipornchai S., Lim C.W., Eisenberger M., 2008, Beam bending solutions based on nonlocal Timoshenko beam theory, Journal of Engineering Mechanics 134: 475-481.
[15] Murmu T., Pradhan S.C., 2009, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E: Low-Dimensional Systems and Nanostructures 41(7): 1232-1239.
[16] Yang J., Ke L.L., Kitipornchai S., 2010, Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, Physica E: Low-Dimensional Systems and Nanostructures 42(5): 1727-1735.
[17] Wang Y., Hu J.M., Lin Y.H., 2010, Multiferroic magnetoelectric composite nanostructures, NPG Asia Materials 2: 61-68.
[18] Civalek O., Demir C., 2011, Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory, Applied Mathematical Modelling 35: 2053-2067.
[19] Roque C.M.C., Ferreira A.J.M., Reddy J.N., 2011, Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, International Journal of Engineering Science 49(9): 976-984.
[20] Prashanthi K., Shaibani P.M., Sohrabi A., 2012, Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires, Physica Status Solidi 6: 244-246.
[21] Zenkour A.M., Sobhy M., 2013, Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium, Physica E: Low-Dimensional Systems and Nanostructures, 53: 251-259.
[22] Şimşek M., Yurtcu H.H., 2013, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory, Composite Structures 97: 378-386.
[23] Ke L.L., Wang Y.S., Yang J., Kitipornchai S., 2014, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mechanica Sinica 30(4): 516-525.
[24] Ke L.L., Wang Y.S., 2014, Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory, Physica E: Low-Dimensional Systems and Nanostructures 63: 52-61.
[25] Mantari J.L., Bonilla E.M., Soares C.G., 2014, A new tangential-exponential higher order shear deformation theory for advanced composite plates, Composites Part B: Engineering 60: 319-328.
[26] Li L., Hu Y., Ling L., 2015, Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory, Composite Structures 133: 1079-1092.
[27] Ebrahimi F., Salari E., 2015a, Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams, Mechanics of Advanced Materials and Structures 23: 1379-1397.
[28] Arefi M., Zenkour A.M., 2016, A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment, Journal of Sandwich Structures & Materials 18(5): 624-651.
[29] Ebrahimi F., Barati M.R., 2016, Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment, Journal of Vibration and Control 24: 549-564.
[30] Ebrahimi F., Barati M.R., 2016, Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium, Journal of the Brazilian Society of Mechanical Sciences and Engineering 39: 937-952.
[31] Ebrahimi F., Barati M.R., 2016, Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field, Applied Physics A 122(4): 1-18.
[32] Ebrahimi F., Barati M.R., 2016, Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment, International Journal of Smart and Nano Materials 7(2): 1-22.
[33] Ebrahimi F., Barati M.R., 2016, An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams, Advances in Nano Research 4(2): 65-84.